Datasets are growing not just in size but in complexity, creating a demand for rich models and quantification of uncertainty. Bayesian methods are an excellent fit for this demand, but scaling Bayesian inference is a challenge. In response to this challenge, there has been considerable recent work based on varying assumptions about model structure, underlying computational resources, and the importance of asymptotic correctness. As a result, there is a zoo of ideas with a wide range of assumptions and applicability. Patterns of Scalable Bayesian Inference seeks to identify unifying principles, patterns, and intuitions for scaling Bayesian inference. It examines how these techniques can be scaled up to larger problems and scaled out across parallel computational resources. It reviews existing work on utilizing modern computing resources with both MCMC and variational approximation techniques. From this taxonomy of ideas, it characterizes the general principles that have proven successful for designing scalable inference procedures and addresses some of the significant open questions and challenges.
OpenCourser helps millions of learners each year. People visit us to learn workspace skills, ace their exams, and nurture their curiosity.
Our extensive catalog contains over 50,000 courses and twice as many books. Browse by search, by topic, or even by career interests. We'll match you to the right resources quickly.
Find this site helpful? Tell a friend about us.
We're supported by our community of learners. When you purchase or subscribe to courses and programs or purchase books, we may earn a commission from our partners.
Your purchases help us maintain our catalog and keep our servers humming without ads.
Thank you for supporting OpenCourser.