What is machine learning, and what kinds of problems can it solve? How can you build, train, and deploy machine learning models at scale without writing a single line of code? When should you use automated machine learning or custom training?
What is machine learning, and what kinds of problems can it solve? How can you build, train, and deploy machine learning models at scale without writing a single line of code? When should you use automated machine learning or custom training?
This course teaches you how to build Vertex AI AutoML models without writing a single line of code; build BigQuery ML models knowing basic SQL; create Vertex AI custom training jobs you deploy using containers (with little knowledge of Docker); use Feature Store for data management and governance; use feature engineering for model improvement; determine the appropriate data preprocessing options for your use case; use Vertex Vizier hyperparameter tuning to incorporate the right mix of parameters that yields accurate, generalized models and knowledge of the theory to solve specific types of ML problems, write distributed ML models that scale in TensorFlow; and leverage best practices to implement machine learning on Google Cloud.
> By enrolling in this specialization you agree to the Qwiklabs Terms of Service as set out in the FAQ and located at: https://qwiklabs.com/terms_of_service <
OpenCourser helps millions of learners each year. People visit us to learn workspace skills, ace their exams, and nurture their curiosity.
Our extensive catalog contains over 50,000 courses and twice as many books. Browse by search, by topic, or even by career interests. We'll match you to the right resources quickly.
Find this site helpful? Tell a friend about us.
We're supported by our community of learners. When you purchase or subscribe to courses and programs or purchase books, we may earn a commission from our partners.
Your purchases help us maintain our catalog and keep our servers humming without ads.
Thank you for supporting OpenCourser.