We may earn an affiliate commission when you visit our partners.
Course image
Brady T. West, James Wagner, Jinseok Kim, and Trent D Buskirk

This specialization aims to explore the Total Data Quality framework in depth and provide learners with more information about the detailed evaluation of total data quality that needs to happen prior to data analysis. The goal is for learners to incorporate evaluations of data quality into their process as a critical component for all projects. We sincerely hope to disseminate knowledge about total data quality to all learners, such as data scientists and quantitative analysts, who have not had sufficient training in the initial steps of the data science process that focus on data collection and evaluation of data quality. We feel that extensive knowledge of data science techniques and statistical analysis procedures will not help a quantitative research study if the data collected/gathered are not of sufficiently high quality.

Read more

This specialization aims to explore the Total Data Quality framework in depth and provide learners with more information about the detailed evaluation of total data quality that needs to happen prior to data analysis. The goal is for learners to incorporate evaluations of data quality into their process as a critical component for all projects. We sincerely hope to disseminate knowledge about total data quality to all learners, such as data scientists and quantitative analysts, who have not had sufficient training in the initial steps of the data science process that focus on data collection and evaluation of data quality. We feel that extensive knowledge of data science techniques and statistical analysis procedures will not help a quantitative research study if the data collected/gathered are not of sufficiently high quality.

This specialization will focus on the essential first steps in any type of scientific investigation using data: either generating or gathering data, understanding where the data come from, evaluating the quality of the data, and taking steps to maximize the quality of the data prior to performing any kind of statistical analysis or applying data science techniques to answer research questions. Given this focus, there will be little material on the analysis of data, which is covered in myriad existing Coursera specializations. The primary focus of this specialization will be on understanding and maximizing data quality prior to analysis.

Enroll now

Share

Help others find Specialization from Coursera by sharing it with your friends and followers:

What's inside

Three courses

The Total Data Quality Framework

By the end of this first course in the Total Data Quality specialization, learners will be able to:

Measuring Total Data Quality

By the end of this course, learners will be able to evaluate Total Data Quality (TDQ) at each stage of the TDQ framework, create a quality concept map, identify relevant software for computing metrics, and apply metrics to real data.

Design Strategies for Maximizing Total Data Quality

By the end of this course, learners will be able to: 1. Learn about design tools and techniques for maximizing TDQ across all stages of the TDQ framework during a data collection or a data gathering process. 2. Identify aspects of the data generating or data gathering process that impact TDQ and be able to assess whether and how such aspects can be measured. 3. Understand TDQ maximization strategies that can be applied when gathering designed and found/organic data.

Learning objectives

  • Explore the total data quality framework.
  • Learn how to integrate data quality assessments as a critical component in all your projects.
  • Understand on the initial steps of data science, emphasizing data collection, data source evaluation, and techniques for ensuring high-quality data.

Save this collection

Save Total Data Quality to your list so you can find it easily later:
Save
Our mission

OpenCourser helps millions of learners each year. People visit us to learn workspace skills, ace their exams, and nurture their curiosity.

Our extensive catalog contains over 50,000 courses and twice as many books. Browse by search, by topic, or even by career interests. We'll match you to the right resources quickly.

Find this site helpful? Tell a friend about us.

Affiliate disclosure

We're supported by our community of learners. When you purchase or subscribe to courses and programs or purchase books, we may earn a commission from our partners.

Your purchases help us maintain our catalog and keep our servers humming without ads.

Thank you for supporting OpenCourser.

© 2016 - 2024 OpenCourser