We may earn an affiliate commission when you visit our partners.
Course image
Qin (Christine) Lv

The Data Mining specialization is intended for data science professionals and domain experts who want to learn the fundamental concepts and core techniques for discovering patterns in large-scale data sets. This specialization consists of three courses: (1) Data Mining Pipeline, which introduces the key steps of data understanding, data preprocessing, data warehouse, data modeling and interpretation/evaluation; (2) Data Mining Methods, which covers core techniques for frequent pattern analysis, classification, clustering, and outlier detection; and (3) Data Mining Project, which offers guidance and hands-on experience of designing and implementing a real-world data mining project.

Read more

The Data Mining specialization is intended for data science professionals and domain experts who want to learn the fundamental concepts and core techniques for discovering patterns in large-scale data sets. This specialization consists of three courses: (1) Data Mining Pipeline, which introduces the key steps of data understanding, data preprocessing, data warehouse, data modeling and interpretation/evaluation; (2) Data Mining Methods, which covers core techniques for frequent pattern analysis, classification, clustering, and outlier detection; and (3) Data Mining Project, which offers guidance and hands-on experience of designing and implementing a real-world data mining project.

Data Mining can be taken for academic credit as part of CU Boulder’s Master of Science in Data Science (MS-DS) degree offered on the Coursera platform. The MS-DS is an interdisciplinary degree that brings together faculty from CU Boulder’s departments of Applied Mathematics, Computer Science, Information Science, and others. With performance-based admissions and no application process, the MS-DS is ideal for individuals with a broad range of undergraduate education and/or professional experience in computer science, information science, mathematics, and statistics. Learn more about the MS-DS program at https://www.coursera.org/degrees/master-of-science-data-science-boulder.

Specialization logo image courtesy of Diego Gonzaga, available here on Unsplash: https://unsplash.com/photos/QG93DR4I0NE

Enroll now

Share

Help others find Specialization from Coursera by sharing it with your friends and followers:

What's inside

Two courses

Data Mining Pipeline

This course covers the key steps in the data mining pipeline, including data understanding, preprocessing, warehousing, modeling, interpretation, evaluation, and applications.

Data Mining Methods

This course covers core data mining techniques, including frequent pattern analysis, classification, clustering, outlier analysis, and mining complex data.

Learning objectives

  • Data mining pipeline: data understanding, preprocessing, warehousing
  • Data mining methods: frequent patterns, classification, clustering, outliers
  • Data mining project: project formulation, design, implementation, reporting

Save this collection

Save Data Mining Foundations and Practice to your list so you can find it easily later:
Save
Our mission

OpenCourser helps millions of learners each year. People visit us to learn workspace skills, ace their exams, and nurture their curiosity.

Our extensive catalog contains over 50,000 courses and twice as many books. Browse by search, by topic, or even by career interests. We'll match you to the right resources quickly.

Find this site helpful? Tell a friend about us.

Affiliate disclosure

We're supported by our community of learners. When you purchase or subscribe to courses and programs or purchase books, we may earn a commission from our partners.

Your purchases help us maintain our catalog and keep our servers humming without ads.

Thank you for supporting OpenCourser.

© 2016 - 2024 OpenCourser