We may earn an affiliate commission when you visit our partners.
Course image
Peter Bermel, Haejun Chung, Evan Witkoske, Supriyo Datta, Shuvro Chowdhury, Mark S. Lundstrom, Bikram K. Mahajan, Woojin Ahn, Yubo Sun, Jan Kaiser, Sayan Roy, Risi Jaiswal, and Dallas Morisette

Nanoelectronic devices are an integral part of our life, including the billion-plus transistors in every smartphone, each of which has an active region that is only a few hundred atoms in length. This previously unimaginable scale has become possible by thoroughly understanding the critical mechanisms that take place at the scale of individual atoms and molecules. Similarly, nanophotonic devices are built into the core of modern life through technologies such as fiber-optic communications, also known as the backbone of the internet.

Read more

Nanoelectronic devices are an integral part of our life, including the billion-plus transistors in every smartphone, each of which has an active region that is only a few hundred atoms in length. This previously unimaginable scale has become possible by thoroughly understanding the critical mechanisms that take place at the scale of individual atoms and molecules. Similarly, nanophotonic devices are built into the core of modern life through technologies such as fiber-optic communications, also known as the backbone of the internet.

You can now learn how to design advanced nanoelectronics and nanophotonics from the creators of nanoHUB, the global nanotechnology research and education portal, even with no prior background in nanotechnology or quantum mechanics. A uniquely designed sequence of courses will help you develop a unified understanding of the essential physics of nanoscale electronic and photonic devices (e.g., field effect transistors, interconnects, lasers and modulators) as well as their important applications in integrated circuits and future electronic and photonic systems.

This sequence of short courses builds all critical concepts from the ground up. Starting from the familiar concepts behind Ohm’s law, the lessons in these short courses lead naturally to a new perspective on even some of the basic physics concepts. This unique viewpoint not only clarifies many old questions about what happens at smaller length scales than we can readily observe but also provides a powerful approach to new questions at the frontier of modern nanoelectronics, such as how devices can be built to control the spin of electrons or other exotic states. Concepts and applications in nanophotonics and fiber optics communications are also discussed. Furthermore, you will learn about the key enabling characteristics of the latest advances in nanophotonic, plasmonic, and metamaterial components and systems.

These courses are intended to be broadly accessible to students in any branch of science or engineering. Students should have a basic familiarity with calculus, elementary differential equations, and elementary circuit concepts such as Ohm’s law. No prior acquaintance with quantum mechanics is assumed. An introductory level understanding of basic semiconductor physics will also be helpful. This topic will be briefly reviewed in this MicroMasters® program and pointers to web-based lectures that cover background topics will be provided.

Our distinguished faculty will share their unique perspective built over 30+ years of leading-edge research and educational innovation in nanotechnology.

Share

Help others find MicroMasters from edX by sharing it with your friends and followers:

What's inside

One course

Fiber Optic Communications

(40 hours)
This course introduces the fundamentals of fiber optic communications, which are essential for the internet. It covers key components, system-level interactions, and future research directions.

Learning objectives

  • Essential physics of transistors, including modern nanoscale transistors.
  • How to design high-performance nanoelectronics.
  • Technology considerations and circuit applications.
  • How to model modern photonic nanostructures and fiber optics.
  • How to account for quantum transport phenomena in nanoscale devices and spintronics.

Save this collection

Save Nanoscience and Technology to your list so you can find it easily later:
Save
Our mission

OpenCourser helps millions of learners each year. People visit us to learn workspace skills, ace their exams, and nurture their curiosity.

Our extensive catalog contains over 50,000 courses and twice as many books. Browse by search, by topic, or even by career interests. We'll match you to the right resources quickly.

Find this site helpful? Tell a friend about us.

Affiliate disclosure

We're supported by our community of learners. When you purchase or subscribe to courses and programs or purchase books, we may earn a commission from our partners.

Your purchases help us maintain our catalog and keep our servers humming without ads.

Thank you for supporting OpenCourser.

© 2016 - 2024 OpenCourser