We may earn an affiliate commission when you visit our partners.
Jonathan Dunn, Tom Coupe, Jeanette King, and Girish Prayag

Learn the core techniques of text analytics and natural language processing (NLP) while discovering the cognitive science that makes it possible in this certificate Text Analytics with Python. On the practical side, you’ll learn how to actually do an analysis in Python: creating pipelines for text classification and text similarity using machine learning. These pipelines are automated workflows that go all the way from data collection to visualization. On the scientific side, you’ll learn what it means to understand language computationally. Artificial intelligence and humans don’t view text documents in the same way. Sometimes deep learning sees patterns that are invisible to us. But often deep learning misses the obvious. We have to understand the limits of a computational approach to language together with the ethical requirements that guide how we choose what data to use and how we protect the privacy of individuals.

Read more

Learn the core techniques of text analytics and natural language processing (NLP) while discovering the cognitive science that makes it possible in this certificate Text Analytics with Python. On the practical side, you’ll learn how to actually do an analysis in Python: creating pipelines for text classification and text similarity using machine learning. These pipelines are automated workflows that go all the way from data collection to visualization. On the scientific side, you’ll learn what it means to understand language computationally. Artificial intelligence and humans don’t view text documents in the same way. Sometimes deep learning sees patterns that are invisible to us. But often deep learning misses the obvious. We have to understand the limits of a computational approach to language together with the ethical requirements that guide how we choose what data to use and how we protect the privacy of individuals.

Along the way, you’ll explore real-world case studies using pandas, numpy, scikit-learn, tensorflow, matplotlib, seaborn, gensim, and spacy within jupyter notebooks to gain useful insights from unstructured data.

What you'll learn

  • Construct applications using unstructured data like news articles and tweets.
  • Apply machine learning classifiers to categorize documents by content and author.
  • Practice using document similarity and topic models to work with large data sets.
  • Visualize and interpret text analytics, including statistical significance testing.
  • Assess the scientific and ethical foundations of new applications for text analysis.

Share

Help others find this collection page by sharing it with your friends and followers:

What's inside

Save this collection

Create your own learning path. Save this collection to your list so you can find it easily later.
Save
Our mission

OpenCourser helps millions of learners each year. People visit us to learn workspace skills, ace their exams, and nurture their curiosity.

Our extensive catalog contains over 50,000 courses and twice as many books. Browse by search, by topic, or even by career interests. We'll match you to the right resources quickly.

Find this site helpful? Tell a friend about us.

Affiliate disclosure

We're supported by our community of learners. When you purchase or subscribe to courses and programs or purchase books, we may earn a commission from our partners.

Your purchases help us maintain our catalog and keep our servers humming without ads.

Thank you for supporting OpenCourser.

© 2016 - 2025 OpenCourser