This specialization studies spacecraft relative orbits. This is of interest to mission scenarios including rendezvous and docking, inspection circumnavigation trajectories, on orbit assembly, space debris mitigation, or interferometric science applications in space. It assumes the learner has already had a complete course on orbital mechanics of a single spacecraft including solutions to the 2-body problem, solving time of flight problems, and understanding J2-perturbations on a spacecraft, as well as how to develop relative orbit feedback control solutions. The specialization is of interest to researchers who need to learn the fundamentals of deriving relative equations of motion about circular, elliptical or even hyperbolic reference orbits. Both nonlinear and linearized relative orbit descriptions are explored and compared, including curvilinear Cartesian coordinates and orbit element differences. Analytical relative motion solutions are developed to understand fundamental relative motion prototypes. Next, the impact of the J2 perturbation is explored for the relative motion, including how to develop J2-invariant relative orbits. Finally, nonlinear relative motion feedback control laws are developed to actively control the relative motion. The specialization targets learners interested in rendezvous and docking, orbital servicing, or developing relative orbit missions.
OpenCourser helps millions of learners each year. People visit us to learn workspace skills, ace their exams, and nurture their curiosity.
Our extensive catalog contains over 50,000 courses and twice as many books. Browse by search, by topic, or even by career interests. We'll match you to the right resources quickly.
Find this site helpful? Tell a friend about us.
We're supported by our community of learners. When you purchase or subscribe to courses and programs or purchase books, we may earn a commission from our partners.
Your purchases help us maintain our catalog and keep our servers humming without ads.
Thank you for supporting OpenCourser.