We may earn an affiliate commission when you visit our partners.
Course image
Stephanie Wehner, Lieven Vandersypen, Menno Veldhorst, Carmen Almudever, Koen Bertels, Leo Di Carlo, Nader Khammassi, Attila Geresdi, Fabio Sebastiano, Barbara Terhal, Giordano Scappucci, Tim Taminiau, Michael Wimmer, Carmen G. Almudever, David Elkouss, and Ben Criger

Quantum supremacy is a term that refers to the projected ability of quantum computers to perform computations that are beyond the capabilities of any classical computer. The era that the quantum computer promises to bring about is often likened to the era initiated by the classical computer. In such a "quantum" information era, quantum computers will be complemented by the quantum internet, which will allow for the transmission of quantum information over long distances. This capability would support many revolutionary applications, such as unhackable communication, clock synchronization and secure access to quantum computers in the cloud.

Read more

Quantum supremacy is a term that refers to the projected ability of quantum computers to perform computations that are beyond the capabilities of any classical computer. The era that the quantum computer promises to bring about is often likened to the era initiated by the classical computer. In such a "quantum" information era, quantum computers will be complemented by the quantum internet, which will allow for the transmission of quantum information over long distances. This capability would support many revolutionary applications, such as unhackable communication, clock synchronization and secure access to quantum computers in the cloud.

But how do quantum computers and quantum internet work? What scientific principles are behind them? What kind of software and protocols are needed for the quantum computer and quantum internet? Which disciplines of science and engineering are required to develop these?

The aim of this program is to help you get up to speed with the present progresses in the transition to a quantum information era. After a quick review of some of the basic concepts that will enable you understanding the operating principles of the quantum computer and quantum internet, the program will begin with an extensive discussion on some of the different ways qubits can be built.

Moreover, we will discuss how a large-scale quantum processor could be built using these qubits. Some of the topics that we cover are micro-architectures, compilers, and programming languages. You will also explore some of the basics of quantum error-correction, an essential procedure that allows us to combat errors that arise during computations using delicate qubits.

The program then concludes with a discussion on the quantum internet: what is it? How can it be built? Why is it useful?

The program is a journey of discovery, so we encourage you to bring your own experiences, insights and thoughts via the forum!

What you'll learn

  • The basics of four different physical implementations of qubits: Silicon spin qubits, diamond NV center qubits, superconducting qubits, and topological qubits.
  • How best to interface classical control circuitry with a quantum processor.
  • Micro-architectures, compilers, and programming languages for a quantum processor.
  • Quantum error-correction.
  • Quantum algorithms that can be run on a quantum processor (e.g. Grover's algorithm).
  • The quantum internet and its applications.

Share

Help others find this collection page by sharing it with your friends and followers:

What's inside

Two courses

Architecture, Algorithms, and Protocols of a Quantum Computer and Quantum Internet

(42 hours)
In this course, we will explore the architecture, algorithms, and protocols of quantum computers and the quantum internet. We will discuss micro-architectures, compilers, programming languages, quantum error-correction, quantum algorithms, and the building blocks of a quantum internet.

The Hardware of a Quantum Computer

(42 hours)
There is no doubt that quantum computers and the quantum internet have many profound applications, they may change the way we think about information, and they could completely change our daily life. This course will help you get up to speed with current progress in the transition to a quantum information era.

Save this collection

Save Quantum 101: Quantum Computing & Quantum Internet to your list so you can find it easily later:
Save
Our mission

OpenCourser helps millions of learners each year. People visit us to learn workspace skills, ace their exams, and nurture their curiosity.

Our extensive catalog contains over 50,000 courses and twice as many books. Browse by search, by topic, or even by career interests. We'll match you to the right resources quickly.

Find this site helpful? Tell a friend about us.

Affiliate disclosure

We're supported by our community of learners. When you purchase or subscribe to courses and programs or purchase books, we may earn a commission from our partners.

Your purchases help us maintain our catalog and keep our servers humming without ads.

Thank you for supporting OpenCourser.

© 2016 - 2024 OpenCourser