We may earn an affiliate commission when you visit our partners.
Course image
César Iván Cobos May and Víctor Cruz Morales

La ciencia de datos es un área que hoy ofrece herramientas analíticas muy poderosas a las organizaciones; aquellas que han incorporado estas prácticas rápidamente han podido obtener ventajas competitivas y tomar mejores decisiones con la información que obtienen. Ante las características actuales de sociedades generadoras de millones de datos, dominar adecuadamente el análisis de datos es una necesidad para cualquier organización.

Read more

La ciencia de datos es un área que hoy ofrece herramientas analíticas muy poderosas a las organizaciones; aquellas que han incorporado estas prácticas rápidamente han podido obtener ventajas competitivas y tomar mejores decisiones con la información que obtienen. Ante las características actuales de sociedades generadoras de millones de datos, dominar adecuadamente el análisis de datos es una necesidad para cualquier organización.

Este curso brinda una introducción al lenguaje R para el análisis de datos con un enfoque práctico desde el inicio. Los ejemplos y actividades son fácilmente relacionables a las tareas que un analista realiza de forma regular, tales como manipular datos y presentar gráficas o resúmenes.

Al finalizar este curso podrás aplicar en tu organización o de manera personal las herramientas brindadas en él y al mismo tiempo, estarás preparado para cursos más avanzados de R.

Enroll now

What's inside

Syllabus

Inicia aquí
Módulo 1: Introducción
Módulo 2: Creación
Read more
Módulo 3: Visualización de los datos
Módulo 4: Programación en R
Fin del curso

Good to know

Know what's good
, what to watch for
, and possible dealbreakers
Desarrolla habilidades muy demandadas para gestionar grandes volúmenes de datos
Dirigido a analistas de datos principiantes que buscan mejorar sus habilidades
Impartido por instructores experimentados con sólida experiencia en el análisis de datos
Conocimientos prácticos de R, un lenguaje ampliamente utilizado en el análisis de datos
Proporciona una base sólida para cursos más avanzados de análisis de datos con R
Incluye ejemplos y actividades relevantes para tareas de análisis de datos del mundo real

Save this course

Save Introducción a R to your list so you can find it easily later:
Save

Activities

Be better prepared before your course. Deepen your understanding during and after it. Supplement your coursework and achieve mastery of the topics covered in Introducción a R with these activities:
Colección de recursos de R
Recopilar y organizar una colección de recursos de R, como documentación, tutoriales, herramientas y ejemplos de código, para un fácil acceso y referencia futura.
Show steps
  • Explorar diferentes fuentes de recursos de R, como sitios web, libros y foros.
  • Identificar y seleccionar recursos relevantes y valiosos.
  • Organizar los recursos en una ubicación central o crear una bibliografía.
Tutoriales sobre visualización de datos
Seguir tutoriales en línea o leer documentación para mejorar las habilidades de visualización de datos, aprendiendo a crear gráficos y tablas efectivos para comunicar información compleja de manera clara.
Show steps
  • Explorar la biblioteca ggplot2 para crear gráficos estáticos y dinámicos.
  • Aprender a diseñar gráficos personalizados y mejorar su estética.
  • Practicar la creación de diferentes tipos de gráficos, como gráficos de barras, gráficos circulares y gráficos de dispersión.
Práctica ejercicios de manipulación de datos
Refuerza tu comprensión de las técnicas de manipulación de datos en R mediante la práctica de ejercicios.
Browse courses on R
Show steps
  • Seleccionar un conjunto de datos
  • Realizar operaciones básicas de manipulación de datos (p. ej., filtrado, ordenación, unión)
  • Crear nuevas variables y realizar transformaciones de datos
  • Validar la calidad de los datos y corregir errores
Four other activities
Expand to see all activities and additional details
Show all seven activities
Crear visualizaciones de datos
Mejora tus habilidades de comunicación visual creando visualizaciones de datos efectivas que presenten información de manera clara y concisa.
Show steps
  • Seleccionar datos relevantes y apropiados
  • Elegir tipos de gráficos apropiados (p. ej., barras, dispersión, torta)
  • Personalizar las visualizaciones (p. ej., colores, leyendas, anotaciones)
  • Interpretar y presentar los resultados
Conexión con profesionales de análisis de datos
Establecer conexiones con profesionales de análisis de datos para obtener orientación y apoyo adicionales, ampliar la red y aprender sobre las tendencias de la industria.
Show steps
  • Asistir a eventos de la industria, como conferencias y seminarios.
  • Conectarse con profesionales en línea a través de plataformas como LinkedIn.
  • Pedir recomendaciones a profesores, compañeros de clase o colegas.
Blog sobre aplicaciones prácticas de R
Profundizar la comprensión de las aplicaciones prácticas de R mediante la creación de un blog sobre sus usos en diferentes industrias
Show steps
  • Investigar y recopilar ejemplos de uso de R en diversos campos
  • Elegir temas específicos para cada entrada del blog
  • Redactar entradas de blog claras y concisas que expliquen las aplicaciones prácticas
  • Publicar y promover el blog para llegar a una audiencia más amplia
Talleres de herramientas avanzadas de R
Asistir a talleres para mejorar las habilidades de R, explorar herramientas avanzadas y aprender sobre las últimas tendencias en el análisis de datos.
Browse courses on Tidyverse
Show steps
  • Investigar talleres relevantes ofrecidos por organizaciones o universidades.
  • Inscribirse y asistir a talleres que se alineen con los intereses y objetivos de aprendizaje.
  • Participar activamente en los talleres, hacer preguntas y tomar notas.

Career center

Learners who complete Introducción a R will develop knowledge and skills that may be useful to these careers:
Data Scientist
Data Scientists utilize their expertise in statistical modeling, machine learning, and data analysis to solve complex business problems. This course offers a solid introduction to the R programming language, which is widely used in data science for data manipulation, statistical analysis, and machine learning. By mastering the concepts taught in this course, learners will gain a competitive edge in pursuing Data Science roles.
Statistician
Statisticians collect, analyze, interpret, and present data to derive meaningful information and support decision-making. This course introduces the R programming language, which is widely used in statistical analysis and data visualization. By mastering the concepts taught in this course, learners will gain a competitive edge in pursuing Statistics roles and enhance their ability to analyze data effectively.
Quantitative Analyst
Quantitative Analysts use mathematical and statistical models to analyze financial data and make investment decisions. This course provides an introduction to the R programming language, which is extensively utilized in quantitative finance for data analysis, statistical modeling, and risk management. By gaining proficiency in R, learners can enhance their skills and contribute to the development of robust investment strategies.
Machine Learning Engineer
Machine Learning Engineers design and develop machine learning models to automate complex tasks and solve business problems. This course introduces the R programming language, which is commonly used for data preparation, model training, and evaluation in machine learning projects. By gaining proficiency in R, learners can enhance their skills and contribute to the development of impactful machine learning solutions.
Data Visualization Specialist
Data Visualization Specialists create visual representations of data to communicate insights and support decision-making. This course provides a solid foundation in data visualization using R, which is a powerful tool for creating interactive and informative data visualizations. By mastering the concepts taught in this course, learners will gain a competitive edge in pursuing Data Visualization roles and enhance their ability to present data effectively.
Biostatistician
Biostatisticians apply statistical methods to analyze and interpret data in the field of healthcare. This course provides an introduction to the R programming language, which is commonly used in biostatistics for data analysis, statistical modeling, and data visualization. By mastering the concepts taught in this course, learners can enhance their skills and contribute to the advancement of healthcare research.
Econometrician
Econometricians use statistical and mathematical models to analyze economic data and test economic theories. This course introduces the R programming language, which is widely used in econometrics for data analysis, statistical modeling, and forecasting. By understanding the concepts taught in this course, learners can enhance their analytical skills and contribute to the development of economic models.
Business Analyst
Business Analysts leverage data and analytical techniques to identify and address business challenges, improve operations, and drive decision-making. This course provides a foundation in data analysis using R, enabling learners to analyze data, derive insights, and communicate their findings effectively. The skills gained in data manipulation, statistical analysis, and data visualization will empower Business Analysts to make data-driven recommendations and contribute to the success of organizations.
Data Analyst
A Data Analyst collects, processes, and interprets data to extract meaningful insights and derive valuable information. This course helps build a foundation in data analysis using the R programming language, enabling learners to effectively handle and analyze large datasets. The skills gained in understanding data structures, data manipulation techniques, and data visualization will prove beneficial for professionals aspiring to become Data Analysts.
Research Analyst
Research Analysts conduct research and analyze data to provide insights and recommendations to clients or stakeholders. This course introduces the R programming language, which is often used in research projects for data analysis, statistical modeling, and data visualization. By understanding the concepts taught in this course, learners can enhance their analytical skills and contribute to the success of research initiatives.
Operations Research Analyst
Operations Research Analysts use mathematical and analytical techniques to solve complex business problems. This course introduces the R programming language, which is sometimes used in operations research for data analysis, optimization modeling, and simulation. By understanding the concepts taught in this course, learners can enhance their analytical skills and contribute to the development of efficient business solutions.
Actuary
Actuaries assess and manage financial risks using mathematical and statistical models. This course provides an introduction to the R programming language, which is sometimes used in actuarial science for data analysis, statistical modeling, and risk assessment. By understanding the concepts taught in this course, learners can broaden their skillset and contribute to the development of robust risk management strategies.
Data Architect
Data Architects design and manage data systems to ensure data integrity, security, and accessibility. This course provides an introduction to the R programming language, which is sometimes used in data architecture for data modeling, data integration, and data quality management. By understanding the concepts taught in this course, learners can broaden their skillset and contribute to the development of efficient data management strategies.
Data Engineer
Data Engineers design, build, and maintain the infrastructure and systems that store and process data. This course introduces the R programming language, which is sometimes used for data engineering tasks such as data integration, data transformation, and data quality management. By understanding the concepts taught in this course, learners can broaden their skillset and contribute to the efficient management of data pipelines.
Software Engineer
Software Engineers design, develop, and maintain software systems. This course provides an introduction to the R programming language, which is sometimes used in software development for data analysis, statistical modeling, and data visualization. By understanding the concepts taught in this course, learners can broaden their skillset and contribute to the development of robust software applications.

Reading list

We've selected ten books that we think will supplement your learning. Use these to develop background knowledge, enrich your coursework, and gain a deeper understanding of the topics covered in Introducción a R.
Este libro ofrece una guía práctica para el análisis de datos con R. Se centra en el uso de bibliotecas populares como tidyverse para la manipulación, visualización y modelado de datos. Es un recurso útil para estudiantes y profesionales que buscan desarrollar habilidades prácticas en el análisis de datos.
Este libro proporciona una introducción al análisis de big data utilizando R. Cubre temas como la gestión, el almacenamiento y el procesamiento de grandes conjuntos de datos. Es un recurso valioso para estudiantes y profesionales que buscan desarrollar habilidades en el análisis de big data.
Este libro proporciona una introducción al deep learning utilizando R. Cubre temas como redes neuronales, convolucionales y recurrentes. Es un recurso valioso para estudiantes y profesionales que buscan desarrollar habilidades en el deep learning.
Este libro se centra en la manipulación de datos con R. Cubre temas como la importación, limpieza y transformación de datos. Es un recurso valioso para estudiantes y profesionales que necesitan desarrollar habilidades sólidas en la manipulación de datos.
Este libro proporciona una introducción integral al lenguaje de programación R. Cubre temas como la sintaxis, las estructuras de datos y las funciones. Es un recurso valioso para los estudiantes y profesionales que buscan desarrollar una comprensión profunda de R.
Este libro proporciona una introducción a los métodos estadísticos utilizados en biología molecular. Cubre temas como el análisis de datos genómicos, el modelado de redes y el aprendizaje automático. Es un recurso valioso para estudiantes y profesionales que buscan desarrollar habilidades en estadística bioinformática.
Este libro proporciona una introducción completa al entorno de desarrollo integrado RStudio. Cubre temas como la gestión de proyectos, el depurado y el versionado de código. Es un recurso valioso para estudiantes y profesionales que buscan mejorar su productividad en R.
Este libro proporciona una guía práctica para la creación de gráficos con R. Cubre temas como la creación de diferentes tipos de gráficos, la personalización y el formato. Es un recurso útil para estudiantes y profesionales que buscan mejorar sus habilidades de visualización de datos.
Este libro proporciona una colección de recetas para tareas comunes de análisis de datos con R. Es un recurso útil para estudiantes y profesionales que buscan soluciones prácticas a problemas específicos.

Share

Help others find this course page by sharing it with your friends and followers:

Similar courses

Here are nine courses similar to Introducción a R.
Introducción a R
Most relevant
Análisis de datos empresariales con R
Most relevant
Análisis de datos empresariales con R
Most relevant
Herramientas para el Análisis de Big Data
Most relevant
Análisis exploratorio de datos con Python y R
Most relevant
Aspectos básicos: Datos, datos, en todas partes
Most relevant
Introducción al Análisis de Datos
Most relevant
Mejora tu Negocio con Inteligencia Artificial
Most relevant
Ciencia de Datos Aplicada al Marketing
Most relevant
Our mission

OpenCourser helps millions of learners each year. People visit us to learn workspace skills, ace their exams, and nurture their curiosity.

Our extensive catalog contains over 50,000 courses and twice as many books. Browse by search, by topic, or even by career interests. We'll match you to the right resources quickly.

Find this site helpful? Tell a friend about us.

Affiliate disclosure

We're supported by our community of learners. When you purchase or subscribe to courses and programs or purchase books, we may earn a commission from our partners.

Your purchases help us maintain our catalog and keep our servers humming without ads.

Thank you for supporting OpenCourser.

© 2016 - 2024 OpenCourser