Save for later

Data Science

One of the principal responsibilities of a data scientist is to make reliable predictions based on data. When the amount of data available is enormous, it helps if some of the analysis can be automated. Machine learning is a way of identifying patterns in data and using them to automatically make predictions or decisions. In this data science course, you will learn basic concepts and elements of machine learning.

The two main methods of machine learning you will focus on are regression and classification. Regression is used when you seek to predict a numerical quantity. Classification is used when you try to predict a category (e.g., given information about a financial transaction, predict whether it is fraudulent or legitimate).

For regression, you will learn how to measure the correlation between two variables and compute a best-fit line for making predictions when the underlying relationship is linear. The course will also teach you how to quantify the uncertainty in your prediction using the bootstrap method. These techniques will be motivated by a wide range of examples.

For classification, you will learn the k-nearest neighbor classification algorithm, learn how to measure the effectiveness of your classifier, and apply it to real-world tasks including medical diagnoses and predicting genres of movies.

The course will highlight the assumptions underlying the techniques, and will provide ways to assess whether those assumptions are good. It will also point out pitfalls that lead to overly optimistic or inaccurate predictions.

Get Details and Enroll Now

OpenCourser is an affiliate partner of edX.

Get a Reminder

Send to:
Rating Not enough ratings
Length 6 weeks
Effort 4 - 6 hours per week
Starts Aug 26 (4 weeks ago)
Cost $199
From University of California, Berkeley, BerkeleyX via edX
Instructors Ani Adhikari, John DeNero, David Wagner
Download Videos On all desktop and mobile devices
Language English
Subjects Programming Data Science
Tags Computer Science Data Analysis & Statistics

Get a Reminder

Send to:

Similar Courses

Careers

An overview of related careers and their average salaries in the US. Bars indicate income percentile.

Research Scientist-Machine Learning $55k

Cloud Architect - Azure / Machine Learning $75k

Watson Machine Learning Engineer $81k

Machine Learning Software Developer $103k

Software Engineer (Machine Learning) $116k

Applied Scientist, Machine Learning $130k

Autonomy and Machine Learning Solutions Architect $131k

Applied Scientist - Machine Learning -... $136k

RESEARCH SCIENTIST (MACHINE LEARNING) $147k

Machine Learning Engineer 2 $161k

Machine Learning Scientist Manager $170k

Machine Learning Scientist, Personalization $213k

Write a review

Your opinion matters. Tell us what you think.

Rating Not enough ratings
Length 6 weeks
Effort 4 - 6 hours per week
Starts Aug 26 (4 weeks ago)
Cost $199
From University of California, Berkeley, BerkeleyX via edX
Instructors Ani Adhikari, John DeNero, David Wagner
Download Videos On all desktop and mobile devices
Language English
Subjects Programming Data Science
Tags Computer Science Data Analysis & Statistics

Similar Courses

Sorted by relevance

Like this course?

Here's what to do next:

  • Save this course for later
  • Get more details from the course provider
  • Enroll in this course
Enroll Now