In the first part of this course you will explore methods to compute an approximate solution to an inconsistent system of equations that have no solutions. Our overall approach is to center our algorithms on the concept of distance. To this end, you will first tackle the ideas of distance and orthogonality in a vector space. You will then apply orthogonality to identify the point within a subspace that is nearest to a point outside of it. This has a central role in the understanding of solutions to inconsistent systems. By taking the subspace to be the column space of a matrix, you will develop a method for producing approximate (“least-squares”) solutions for inconsistent systems.
In the first part of this course you will explore methods to compute an approximate solution to an inconsistent system of equations that have no solutions. Our overall approach is to center our algorithms on the concept of distance. To this end, you will first tackle the ideas of distance and orthogonality in a vector space. You will then apply orthogonality to identify the point within a subspace that is nearest to a point outside of it. This has a central role in the understanding of solutions to inconsistent systems. By taking the subspace to be the column space of a matrix, you will develop a method for producing approximate (“least-squares”) solutions for inconsistent systems.
You will then explore another application of orthogonal projections: creating a matrix factorization widely used in practical applications of linear algebra. The remaining sections examine some of the many least-squares problems that arise in applications, including the least squares procedure with more general polynomials and functions.
This course then turns to symmetric matrices. arise more often in applications, in one way or another, than any other major class of matrices. You will construct the diagonalization of a symmetric matrix, which gives a basis for the remainder of the course.
Upon completion of this course, learners will be able to:
OpenCourser helps millions of learners each year. People visit us to learn workspace skills, ace their exams, and nurture their curiosity.
Our extensive catalog contains over 50,000 courses and twice as many books. Browse by search, by topic, or even by career interests. We'll match you to the right resources quickly.
Find this site helpful? Tell a friend about us.
We're supported by our community of learners. When you purchase or subscribe to courses and programs or purchase books, we may earn a commission from our partners.
Your purchases help us maintain our catalog and keep our servers humming without ads.
Thank you for supporting OpenCourser.