We may earn an affiliate commission when you visit our partners.
Edwin Moreno

Este curso tiene la intención de ser un referente para la nueva generación de emprendedores y brindar una guía tanto para constituir nuevos negocios, como transformar organizaciones existentes utilizando los beneficios de la inteligencia artificial y las nuevas metodologías de innovación.

Enroll now

Here's a deal for you

We found an offer that may be relevant to this course.
Save money when you learn. All coupon codes, vouchers, and discounts are applied automatically unless otherwise noted.

What's inside

Syllabus

Semana 1: Inteligencia Artificial y Aprendizaje Máquina
En esta sección podrás tener un primer acercamiento a lo que es la Inteligencia Artificial y el Aprendizaje Máquina, podrás conocer su fundamento e historia.
Read more
Semana 2: Herramientas de IA y el método de clasificación en negocios
Durante esta semana, explorarás diversas herramientas y softwares que facilitan la aplicación de la IA en los negocios. Se analizarán las características y usos de estos softwares, además de profundizar en el problema de la clasificación dentro del aprendizaje máquina. Los participantes aprenderán sobre métodos y algoritmos comunes para la clasificación de datos y cómo los árboles de decisión pueden ser utilizados para tomar decisiones empresariales informadas.
Semana 3: Agentes virtuales
Ha llegado el momento de aprender sobre los agentes virtuales, su historia, funciones y tipos (de voz y de texto).
Semana 4: Clasificación de clientes por historial crediticio
En esta semana, aprenderás a clasificar a los clientes por su historial crediticio, con ayuda de la inteligencia artificial y también encontrarás un gran apoyo en el análisis de caso que se te presentará a continuación.
Semana 5: Aplicación de identificación de imágenes y sistemas de recomendación
En esta última semana, podrás aprender a aplicar la identificación de imágenes y sistemas de recomendación.
Evaluación final
En la evaluación final podrás poner en práctica todos tus conocimientos adquiridos.

Save this course

Save Mejora tu negocio con Inteligencia Artificial to your list so you can find it easily later:
Save

Activities

Coming soon We're preparing activities for Mejora tu negocio con Inteligencia Artificial. These are activities you can do either before, during, or after a course.

Career center

Learners who complete Mejora tu negocio con Inteligencia Artificial will develop knowledge and skills that may be useful to these careers:

Reading list

We haven't picked any books for this reading list yet.
A textbook that presents AI from a computational perspective, covering topics such as agents, knowledge representation, reasoning, and planning. Suitable for readers with a background in computer science or mathematics.
A classic textbook on reinforcement learning, a subfield of AI concerned with learning from interaction with the environment. Covers both theoretical concepts and practical algorithms, with a focus on real-world applications.
A comprehensive textbook that provides a broad overview of the field, covering topics such as problem-solving, learning, machine learning, and natural language processing. Suitable for both beginners and advanced learners.
A highly cited and influential book that focuses on deep learning, a subfield of AI concerned with constructing models for complex data. Covers theoretical concepts, popular algorithms, and practical applications.
A practical guide to natural language processing (NLP) using Python, covering topics such as text classification, sentiment analysis, and machine translation. Suitable for beginners with some programming experience.
A short but powerful book that explores the potential benefits and risks of AI, as well as the ethical dilemmas that need to be addressed as AI becomes more advanced.
A comprehensive German-language textbook that provides a broad overview of AI, covering topics such as search, knowledge representation, and machine learning. Suitable for both beginners and advanced learners.
A French-language textbook that focuses on machine learning, a subfield of AI. Covers topics such as supervised learning, unsupervised learning, and deep learning. Suitable for beginners with some programming experience.
A comprehensive textbook that covers probabilistic graphical models (PGMs), a powerful tool for representing and reasoning about complex systems. Suitable for advanced learners with a background in probability and statistics.
Provides a comprehensive and practical guide to deep learning, including hands-on exercises and real-world examples.
Provides a comprehensive treatment of machine learning from a probabilistic perspective, covering a wide range of topics from Bayesian inference to deep learning.
Provides a balanced treatment of both statistical and machine learning methods, making it accessible to a wide audience.

Share

Help others find this course page by sharing it with your friends and followers:

Similar courses

Similar courses are unavailable at this time. Please try again later.
Our mission

OpenCourser helps millions of learners each year. People visit us to learn workspace skills, ace their exams, and nurture their curiosity.

Our extensive catalog contains over 50,000 courses and twice as many books. Browse by search, by topic, or even by career interests. We'll match you to the right resources quickly.

Find this site helpful? Tell a friend about us.

Affiliate disclosure

We're supported by our community of learners. When you purchase or subscribe to courses and programs or purchase books, we may earn a commission from our partners.

Your purchases help us maintain our catalog and keep our servers humming without ads.

Thank you for supporting OpenCourser.

© 2016 - 2025 OpenCourser