This course focuses on how to represent a graph using three common classes of graph algorithms - the topological sort to sort vertices by precedence relationships, the shortest path algorithm, and finally the spanning tree algorithms.
This course focuses on how to represent a graph using three common classes of graph algorithms - the topological sort to sort vertices by precedence relationships, the shortest path algorithm, and finally the spanning tree algorithms.
A graph is the underlying data structure behind social networks, maps, routing networks and logistics, and a whole range of applications that you commonly use today. In this course, Working with Graph Algorithms in Python, you'll learn different kinds of graphs, their use cases, and how they're represented in code. First, you'll dive into understanding the pros and cons of adjacency matrices, adjacency lists, adjacency sets, and know when you would choose one data structure over another. Next, you'll explore common graph algorithms, such as the topological sort, used to model dependencies in tasks, build components, and manage projects. Additionally, you'll cover how to find the shortest path in a graph, the core algorithm for mapping technologies. Lastly, you'll be introduced to spanning tree algorithms, which are used to find a path and covers all nodes with minimum cost, the fundamental algorithm behind figuring flight paths, and bus routes. By the end of this course, you'll have a better understanding of these principles and the necessary skills to implement them into simple, easy to follow Python code.
OpenCourser helps millions of learners each year. People visit us to learn workspace skills, ace their exams, and nurture their curiosity.
Our extensive catalog contains over 50,000 courses and twice as many books. Browse by search, by topic, or even by career interests. We'll match you to the right resources quickly.
Find this site helpful? Tell a friend about us.
We're supported by our community of learners. When you purchase or subscribe to courses and programs or purchase books, we may earn a commission from our partners.
Your purchases help us maintain our catalog and keep our servers humming without ads.
Thank you for supporting OpenCourser.