Neste curso, você se aprofundará no universo da IA Generativa com LLMs (Large Language Models), explorando o potencial da combinação entre LangChain e Python. Você implementará soluções proprietárias (ChatGPT) e modelos open source modernos, como Llama e Phi. Por meio de projetos práticos e reais, você desenvolverá aplicações inovadoras, incluindo um assistente virtual personalizado e um chatbot que interage com documentos e vídeos. Vamos explorar técnicas avançadas como RAG e agentes, além de utilizar ferramentas como Streamlit para criar interfaces intuitivas. Você aprenderá a utilizar essas tecnologias gratuitamente no Google Colab e também a executar os projetos em ambiente local.
Neste curso, você se aprofundará no universo da IA Generativa com LLMs (Large Language Models), explorando o potencial da combinação entre LangChain e Python. Você implementará soluções proprietárias (ChatGPT) e modelos open source modernos, como Llama e Phi. Por meio de projetos práticos e reais, você desenvolverá aplicações inovadoras, incluindo um assistente virtual personalizado e um chatbot que interage com documentos e vídeos. Vamos explorar técnicas avançadas como RAG e agentes, além de utilizar ferramentas como Streamlit para criar interfaces intuitivas. Você aprenderá a utilizar essas tecnologias gratuitamente no Google Colab e também a executar os projetos em ambiente local.
Na introdução, você será apresentado à teoria dos Grandes Modelos de Linguagem (LLMs) e seus conceitos fundamentais. Além disso, será explorado o ecossistema da Hugging Face, que oferece soluções modernas de Processamento de Linguagem Natural (PLN). Você aprenderá a implementar LLMs utilizando tanto o pipeline da Hugging Face quanto a biblioteca LangChain, compreendendo as vantagens de cada abordagem.
Na segunda parte, será abordado o domínio da LangChain. Você aprenderá a acessar modelos de código aberto, como o Llama da Meta e o Phi da Microsoft, além de LLMs proprietárias, como o ChatGPT da OpenAI. Será explicado como realizar a quantização de modelos, com o objetivo de melhorar a performance e a escalabilidade. Também serão apresentados os principais componentes do LangChain, como chains, templates e tools, e como utilizá-los para desenvolver soluções robustas em PLN. Técnicas de engenharia de prompt serão abordadas para ajudar a obter resultados mais precisos. O conceito de RAG (Retrieval-Augmented Generation) será explorado, incluindo o processo de armazenamento e recuperação de informações. Você aprenderá a implementar bancos de dados vetoriais (vector stores) e entenderá a importância dos embeddings e como utilizá-los de forma eficaz. Também será mostrado como usar RAG para interagir com documentos em PDF e páginas da internet. Além disso, você terá a oportunidade de explorar a integração de agentes e ferramentas, como o uso de LLMs para realizar pesquisas na internet e consultar informações recentes. As soluções serão implementadas em ambiente local, o que permitirá acessar modelos open source mesmo sem conexão à internet.
Na fase de desenvolvimento de projetos práticos, você aprenderá a criar um chatbot customizado com interface e memória para perguntas e respostas (Q&A). Também será ensinado como desenvolver aplicações interativas utilizando a ferramenta Streamlit, facilitando a criação de interfaces intuitivas. Um dos projetos envolverá o desenvolvimento de uma aplicação avançada que utiliza o RAG para interagir com múltiplos documentos e extrair informações relevantes através de uma interface de chat. Outro projeto consistirá em construir uma aplicação que realiza a sumarização automática de vídeos e responde a perguntas relacionadas, resultando em uma ferramenta poderosa para a compreensão automática e instantânea de vídeos.
OpenCourser helps millions of learners each year. People visit us to learn workspace skills, ace their exams, and nurture their curiosity.
Our extensive catalog contains over 50,000 courses and twice as many books. Browse by search, by topic, or even by career interests. We'll match you to the right resources quickly.
Find this site helpful? Tell a friend about us.
We're supported by our community of learners. When you purchase or subscribe to courses and programs or purchase books, we may earn a commission from our partners.
Your purchases help us maintain our catalog and keep our servers humming without ads.
Thank you for supporting OpenCourser.