We may earn an affiliate commission when you visit our partners.
Course image
Leire Ahedo

Este proyecto es un curso práctico y efectivo para aprender a generar modelos de Machine Learning interpretables. Se explican en profundidad diferentes técnicas de interpretabilidad de modelos como: interpretML y LIME que nos permitirá entender el porqué de las predicciones.

Read more

Este proyecto es un curso práctico y efectivo para aprender a generar modelos de Machine Learning interpretables. Se explican en profundidad diferentes técnicas de interpretabilidad de modelos como: interpretML y LIME que nos permitirá entender el porqué de las predicciones.

Gracias a esto, aprenderás a entrenar modelos Glassbox que puedas entender el porqué de sus decisiones.

Enroll now

What's inside

Syllabus

Machine Learning Interpretable: LIME e InterpretML
En este curso se aprenderá a generar modelos de interpretables Machine Learning

Good to know

Know what's good
, what to watch for
, and possible dealbreakers
Este curso es ideal para quienes desean comprender profundamente los modelos de aprendizaje automático
El temario cubre las técnicas esenciales de interpretación de modelos, como LIME e interpretML, lo que lo hace adecuado para aquellos que buscan ampliar sus conocimientos en esta área
Los instructores, Leire Ahedo, no están explícitamente mencionados como expertos reconocidos en el campo de la interpretación de modelos de aprendizaje automático
El curso está diseñado para enseñar a los alumnos a desarrollar modelos de caja de vidrio, brindándoles una comprensión integral de las predicciones del modelo
La descripción del curso no menciona explícitamente si el curso requiere conocimientos previos o experiencia en aprendizaje automático

Save this course

Save Machine Learning Interpretable: interpretML y LIME to your list so you can find it easily later:
Save

Activities

Be better prepared before your course. Deepen your understanding during and after it. Supplement your coursework and achieve mastery of the topics covered in Machine Learning Interpretable: interpretML y LIME with these activities:
Revisar conceptos básicos de machine learning
Refuerza los conceptos fundamentales de machine learning para preparar el terreno para el curso.
Browse courses on Machine Learning
Show steps
  • Revisa los diferentes tipos de algoritmos de machine learning (por ejemplo, supervisados, no supervisados).
  • Repasa las métricas de evaluación de modelos de machine learning (por ejemplo, precisión, recall, F1-score).
  • Realiza algunos ejercicios prácticos de machine learning utilizando una biblioteca o framework popular (por ejemplo, Scikit-learn).
Conectar con expertos en interpretabilidad de modelos
Acelera tu aprendizaje y amplía tu red conectando con personas que trabajan en el campo de la interpretabilidad de modelos.
Browse courses on Networking
Show steps
  • Asiste a conferencias o eventos de la industria relacionados con la interpretabilidad de modelos.
  • Conecta con expertos en LinkedIn o Twitter.
  • Programa llamadas o reuniones para obtener consejos y orientación.
Explorar tutoriales sobre técnicas de interpretabilidad de modelos
Profundiza tu comprensión de las técnicas de interpretabilidad de modelos para mejorar tu capacidad de entender y explicar las predicciones.
Browse courses on LIME
Show steps
  • Busca tutoriales online o en plataformas como Coursera sobre LIME (Local Interpretable Model-Agnostic Explanations) e InterpretML.
  • Sigue los tutoriales paso a paso para implementar estas técnicas en tus propios modelos de machine learning.
  • Experimenta con diferentes parámetros y datos para observar cómo afectan los resultados de la interpretabilidad.
One other activity
Expand to see all activities and additional details
Show all four activities
Crear un resumen visual de las técnicas de interpretabilidad
Mejora tu retención y comprensión de las técnicas de interpretabilidad creando una representación visual clara y concisa.
Show steps
  • Elige las técnicas de interpretabilidad más importantes que desees cubrir.
  • Diseña un mapa mental, infografía o presentación que explique cada técnica de forma sencilla y visual.
  • Comparte tu resumen con otros estudiantes o compañeros para obtener comentarios y mejorar tu comprensión.

Career center

Learners who complete Machine Learning Interpretable: interpretML y LIME will develop knowledge and skills that may be useful to these careers:
Machine Learning Engineer
Machine Learning Engineers build and deploy machine learning models. interpretML and LIME are machine learning interpretability techniques that can help you understand how your models make predictions. This can be valuable for debugging models, explaining results to stakeholders, and identifying potential biases. Taking this course can help you develop the skills needed to succeed as a Machine Learning Engineer.
Data Scientist
Data Scientists analyze data to extract meaningful insights and build predictive models. interpretML and LIME are machine learning interpretability techniques that can help you understand how your models make predictions. This can be valuable for debugging models, explaining results to stakeholders, and identifying potential biases. Taking this course can help you develop the skills needed to succeed as a Data Scientist.
Data Analyst
Data Analysts analyze data to identify trends and patterns. interpretML and LIME are machine learning interpretability techniques that can help you understand how your models make predictions. This can be valuable for debugging models, explaining results to stakeholders, and identifying potential biases.
Operations Research Analyst
Operations Research Analysts use mathematical and statistical techniques to solve business problems. interpretML and LIME are machine learning interpretability techniques that can help you understand how your models make predictions. This can be valuable for debugging models, explaining results to stakeholders, and identifying potential biases.
Quantitative Analyst
Quantitative Analysts use mathematical and statistical techniques to analyze data and make predictions. interpretML and LIME are machine learning interpretability techniques that can help you understand how your models make predictions. This can be valuable for debugging models, explaining results to stakeholders, and identifying potential biases.
Business Analyst
Business Analysts use data to understand business problems and opportunities. interpretML and LIME are machine learning interpretability techniques that can help you understand how your models make predictions. This can be valuable for debugging models, explaining results to stakeholders, and identifying potential biases.
Statistician
Statisticians collect, analyze, and interpret data. interpretML and LIME are machine learning interpretability techniques that can help you understand how your models make predictions. This can be valuable for debugging models, explaining results to stakeholders, and identifying potential biases.
Sales Analyst
Sales Analysts analyze data to identify sales trends and opportunities. interpretML and LIME are machine learning interpretability techniques that can help you understand how your models make predictions. This can be valuable for debugging models, explaining results to stakeholders, and identifying potential biases.
Fraud Analyst
Fraud Analysts analyze data to identify and prevent fraud. interpretML and LIME are machine learning interpretability techniques that can help you understand how your models make predictions. This can be valuable for debugging models, explaining results to stakeholders, and identifying potential biases.
Software Engineer
Software Engineers design, develop, and maintain software systems. interpretML and LIME are machine learning interpretability techniques that can help you understand how your models make predictions. This can be valuable for debugging models, explaining results to stakeholders, and identifying potential biases.
Financial Analyst
Financial Analysts analyze data to make investment recommendations. interpretML and LIME are machine learning interpretability techniques that can help you understand how your models make predictions. This can be valuable for debugging models, explaining results to stakeholders, and identifying potential biases.
Marketing Analyst
Marketing Analysts analyze data to understand customer behavior and marketing effectiveness. interpretML and LIME are machine learning interpretability techniques that can help you understand how your models make predictions. This can be valuable for debugging models, explaining results to stakeholders, and identifying potential biases.
Risk Analyst
Risk Analysts analyze data to identify and mitigate risks. interpretML and LIME are machine learning interpretability techniques that can help you understand how your models make predictions. This can be valuable for debugging models, explaining results to stakeholders, and identifying potential biases.
Product Manager
Product Managers manage the development and launch of new products. interpretML and LIME are machine learning interpretability techniques that can help you understand how your models make predictions. This can be valuable for debugging models, explaining results to stakeholders, and identifying potential biases.
Data Engineer
Data Engineers design and build data pipelines. interpretML and LIME are machine learning interpretability techniques that can help you understand how your models make predictions. This can be valuable for debugging models, explaining results to stakeholders, and identifying potential biases.

Reading list

We've selected nine books that we think will supplement your learning. Use these to develop background knowledge, enrich your coursework, and gain a deeper understanding of the topics covered in Machine Learning Interpretable: interpretML y LIME.
Provides a comprehensive overview of interpretable machine learning techniques, including both LIME and interpretML. It valuable resource for anyone who wants to learn more about these techniques and how to use them to build interpretable models.
Provides a comprehensive overview of model explainability in machine learning. It valuable resource for anyone who wants to learn more about interpretable AI and how to use it to build interpretable models.
Este libro proporciona una base matemática sólida para el Machine Learning. Cubre una amplia gama de temas, desde álgebra lineal hasta cálculo y optimización.
Este libro proporciona una introducción completa a los métodos de aprendizaje automático con escasez. Es una lectura valiosa para cualquiera que quiera aprender más sobre este importante tema.
Este libro proporciona una introducción completa al aprendizaje profundo. Es una buena opción para los estudiantes que quieren aprender los conceptos básicos y las aplicaciones prácticas.
Este libro proporciona una introducción completa al aprendizaje por refuerzo. Es una buena opción para los estudiantes que quieren aprender los conceptos básicos y las aplicaciones prácticas.

Share

Help others find this course page by sharing it with your friends and followers:

Similar courses

Here are nine courses similar to Machine Learning Interpretable: interpretML y LIME.
Machine Learning Interpretable: SHAP, PDP y permutacion
Most relevant
Los portafolios y las inversiones en el mercado de...
Most relevant
Introducción a la Ingeniería Gastronómica - ¡Ciencia en...
Most relevant
La gestión en la empresa familiar
Most relevant
Diagramas UML estructurales para la Ingeniería del...
Most relevant
Las formas de gobierno en el mundo
Most relevant
Machine Learning in the Enterprise - Español
Most relevant
Fundamentos de probabilidad y aplicaciones
Most relevant
Entorno Global y Tendencias de Innovación Tecnológica
Most relevant
Our mission

OpenCourser helps millions of learners each year. People visit us to learn workspace skills, ace their exams, and nurture their curiosity.

Our extensive catalog contains over 50,000 courses and twice as many books. Browse by search, by topic, or even by career interests. We'll match you to the right resources quickly.

Find this site helpful? Tell a friend about us.

Affiliate disclosure

We're supported by our community of learners. When you purchase or subscribe to courses and programs or purchase books, we may earn a commission from our partners.

Your purchases help us maintain our catalog and keep our servers humming without ads.

Thank you for supporting OpenCourser.

© 2016 - 2024 OpenCourser