Linear Mixed-Effects Models with R is a 7-session course that teaches the requisite knowledge and skills necessary to fit, interpret and evaluate the estimated parameters of linear mixed-effects models using R software. Alternatively referred to as nested, hierarchical, longitudinal, repeated measures, or temporal and spatial pseudo-replications, linear mixed-effects models are a form of least-squares model-fitting procedures. They are typically characterized by two (or more) sources of variance, and thus have multiple correlational structures among the predictor independent variables, which affect their estimated effects, or relationships, with the predicted dependent variables. These multiple sources of variance and correlational structures must be taken into account in estimating the "fit" and parameters for linear mixed-effects models.
Linear Mixed-Effects Models with R is a 7-session course that teaches the requisite knowledge and skills necessary to fit, interpret and evaluate the estimated parameters of linear mixed-effects models using R software. Alternatively referred to as nested, hierarchical, longitudinal, repeated measures, or temporal and spatial pseudo-replications, linear mixed-effects models are a form of least-squares model-fitting procedures. They are typically characterized by two (or more) sources of variance, and thus have multiple correlational structures among the predictor independent variables, which affect their estimated effects, or relationships, with the predicted dependent variables. These multiple sources of variance and correlational structures must be taken into account in estimating the "fit" and parameters for linear mixed-effects models.
The structure of mixed-effects models may be additive, or non-linear, or exponential or binomial, or assume various other ‘families’ of modeling relationships with the predicted variables. However, in this "hands-on" course, coverage is restricted to linear mixed-effects models, and especially, how to: (1) choose an appropriate linear model; (2) represent that model in R; (3) estimate the model; (4) compare (if needed), interpret and report the results; and (5) validate the model and the model assumptions. Additionally, the course explains the fitting of different correlational structures to both temporal, and spatial, pseudo-replicated models to appropriately adjust for the lack of independence among the error terms. The course does address the relevant statistical concepts, but mainly focuses on implementing mixed-effects models in R with ample R scripts, ‘real’ data sets, and live demonstrations. No prior experience with R is necessary to successfully complete the course as the first entire course section consists of a "hands-on" primer for executing statistical commands and scripts using R.
OpenCourser helps millions of learners each year. People visit us to learn workspace skills, ace their exams, and nurture their curiosity.
Our extensive catalog contains over 50,000 courses and twice as many books. Browse by search, by topic, or even by career interests. We'll match you to the right resources quickly.
Find this site helpful? Tell a friend about us.
We're supported by our community of learners. When you purchase or subscribe to courses and programs or purchase books, we may earn a commission from our partners.
Your purchases help us maintain our catalog and keep our servers humming without ads.
Thank you for supporting OpenCourser.