This course contains 14 segments:
Circulatory system introduction
This course contains 14 segments:
Circulatory system introduction
No organ quite symbolizes love like the heart. One reason may be that your heart helps you live, by moving ~5 liters (1.3 gallons) of blood through almost 100,000 kilometers (62,000 miles) of blood vessels every single minute! It has to do this all day, everyday, without ever taking a vacation! Now that is true love. Learn about how the heart works, how blood flows through the heart, where the blood goes after it leaves the heart, and what your heart is doing when it makes the sound “Lub Dub.”
Respiratory system introduction
Did you know that your right lung is larger than your left? That’s because the majority of your heart is on the left side of your body, and your left lung is slightly smaller to accommodate it. The lungs take in oxygen and help you breathe out carbon dioxide. Humans have an intricate respiratory system, with hundreds of millions of tiny air sacs called alveoli, where all of the magic happens. These videos will introduce you to the lungs, and show how they help you survive.
Urinary system introduction
If you want to learn more about the renal system, then urine the right place! (Pun aside, the kidneys are about more than just making urine). Every thirty minutes, your kidneys filter the entire blood supply in your body. Imagine a dirty pool filled with algae. Placing a filter in this pool will cause the algae to be flushed out, and after a time you’ll have a clean, crisp blue pool to enjoy. Just like the filter for a pool, our kidneys filter the blood and remove toxic wastes. These paired organs are key to maintaining electrolyte and water homeostasis in your body.
Hematologic system introduction
Roughly 5 L of blood fill your arteries, veins, capillaries, and venules. What’s it good for you ask? It carries oxygen to help your cells carry out respiration in addition to a number of other substances like lipids and hormones throughout the body. In cases of blood loss, such as trauma situations, the physician must be wary of the different blood types. We will explore the intricacies of the hematologic system here.
Immunologic system introduction
Chances are, you’ve had a fever or a cough at least once in your life (unless you live in a bubble, in which case you should probably go out more!) Have you ever wondered why your body reacts this way? Your body has a deadly arsenal of weapons against microbial invaders, ranging from bacteria and viruses to protozoans and fungi. We have specialized cells that destroy foreign bodies through mechanisms such as consumption, expulsion, and degradation. You will become acquainted with the interplay of the numerous soldiers in your body’s army and how they keep you healthy!
Gastrointestinal system introduction
Do you live to eat, or eat to live? Folks fall on both sides of this question, but who deny the powerful role that food and water play in our everyday lives. If we were cars, food and water would be the gasoline. Eating keeps us moving, laughing, playing, and learning. The energy from food is carefully extracted through a process of ingestion, digestion, and absorption, and requires one long (very long!) tube with a couple of key organs (liver, pancreas) sprouting off of it. Go ahead and grab a bite to eat before we get started…
Nervous system introduction
Neurons transmit information to one another through electrochemical signals. They make up the motor nerves that allow you to type an essay, the sensory nerves that let you feel a fluffy dog, and your brain, allowing to remember the content of this module. They have a number of helper cells, ranging from astrocytes, to microglia, to ependymal cells as well. You will come to appreciate the structure and function of neurons and the comrade cells which help to maintain the optimal function of the nervous system.
Muscular system introduction
Muscles never sleep (literally). If you have ever taken a breath, you have benefited from the work of the diaphragm, which contracts to create an area of low pressure within your thoracic cavity, allowing air in. How exactly are some weightlifters able to support 717 lbs without breaking anything more than a little sweat? Fun fact: the largest muscle in your body is the gluteus maximus (that’s your butt) while the smallest skeletal muscle is the stapedius (it stabilizes the smallest bone, the stapes, which is in your middle ear).
Skeletal system introduction
Were it not for your skeleton, you and I would be a mere sack of flesh. You will come to appreciate that the bones, together with muscles, are a scaffolding for your body. We will also explore their endocrine function, especially with regards to calcium and phosphate homeostasis. Fun fact: the bone most broken is the clavicle (AKA collar bone).
Endocrine system introduction
Glands are special organs that secrete chemical messages called hormones, which seep into the blood - it’s like putting a tea bag in hot water. As the heart pumps, this blood carries these chemical messages throughout the body, allowing the hormones to interact with specific target cells and organs. Endocrine glands help us to maintain our appetites, grow up, metabolize molecules, concentrate urine,- and oh, so much more! We will examine how these variegated hormones play a role in homeostasis as the body responds to a changing environment.
Integumentary system introduction
There is really more than meets the eye with skin. Yes, it does make us look nicer than a bag of bones, muscles, and organs. But it also serves other important purposes which range from guarding the body against infection to sensation to allowing for metabolism of vitamin D. We will explore the structure and function of skin from the macroscopic to the microscopic level in this tutorial.
Lymphatic system introduction
Your heart pumps roughly 20 L of blood throughout the day to your tissues. The plasma component of blood (not containing blood cells) leaks out through capillaries (the tiniest of blood vessels) and is mostly reabsorbed. However, about 3L of the plasma is left behind in fluid surrounding tissues, and it is the job of the hard-working lymphatic system to bring back this fluid to the circulatory system. The lymphatic system moves fluid in one direction, but without the force of a pump like the heart.
Reproductive system introduction
Our genes are survivors. Even though a person might die, his or her genes will go on to the next generation and then the next generation… Some genes are exactly the same as the ones in your great-great-great-grandmother! Yet, with the exception of identical twins, we are all genetically distinct from our family members. Starting with sexual reproduction and then the development of a baby, we’re going to take a journey that starts with our own microscopic beginning, and ends with a fully formed baby entering the world.
Pregnancy and pregnancy complications
OpenCourser helps millions of learners each year. People visit us to learn workspace skills, ace their exams, and nurture their curiosity.
Our extensive catalog contains over 50,000 courses and twice as many books. Browse by search, by topic, or even by career interests. We'll match you to the right resources quickly.
Find this site helpful? Tell a friend about us.
We're supported by our community of learners. When you purchase or subscribe to courses and programs or purchase books, we may earn a commission from our partners.
Your purchases help us maintain our catalog and keep our servers humming without ads.
Thank you for supporting OpenCourser.