We may earn an affiliate commission when you visit our partners.
Course image
Charles Russell Severance

ستقدم هذه الدورة التدريبية بُنى البيانات الأساسية للغة برمجة Python. وسوف نتجاوز أساسيات البرمجة الإجرائية ونستكشف الكيفية التي يمكننا من خلالها استخدام بُنى بيانات Python المضمَّنة، مثل القوائم والقواميس والمجموعات لإجراء تحليل معقد بشكل متزايد للبيانات. ستغطي هذه الدورة التدريبية الفصول من 6 إلى 10 من كتاب «Python للجميع» النصي. وستغطي هذه الدورة التدريبية Python 3.

Enroll now

What's inside

Syllabus

الفصل السادس: السلاسل
في هذا الفصل الدراسي، سنتابع من حيث توقفنا في الفصل الدراسي السابق، بدءًا من الفصل 6 من الكتاب النصي لنغطي السلاسل النصية وننتقل إلى بُنى البيانات. ويُخصص الأسبوع الثاني من هذا الفصل الدراسي لتثبيت Python، إذا كنتم تريدون بالفعل تشغيل التطبيقات على كمبيوتر سطح مكتب أو جهاز الكمبيوتر المحمول الخاص بكم. إذا اخترتم تثبيت Python، فيمكنكم تخطي الأسبوع الثالث والتقدم في الدورة.
Read more
الوحدة: تثبيت Python واستخدامه
في هذه الوحدة سوف تقومون بإعداد الأشياء حتى تتمكنون من كتابة برامج Python. ونحن لا نطلب تثبيت Python لهذا الفصل الدراسي. ويمكنكم كتابة واختبار برامج Python في المتصفح باستخدام "Python Code Playground" في هذا الدرس. يُرجى قراءة مادة "استخدام Python في هذا الفصل الدراسي" للاطلاع على التفاصيل.
الفصل السابع: الملفات
حتى الآن، كنا نعمل باستخدام البيانات التي تتم قراءتها من المستخدم أو البيانات في الثوابت. لكن البرامج الفعلية تعالج كميات كبيرة للغاية من البيانات عن طريق قراءة وكتابة الملفات في تخزين ثانوي على جهاز الكمبيوتر الخاص بكم. وفي هذا الفصل نبدأ في كتابة برامجنا الأولى التي تقرأ وتفحص وتعالج البيانات الحقيقية.
الفصل الثامن: القوائم
نظرًا لأننا نريد حل المشكلات الأكثر تعقيدًا في Python، فنحن بحاجة إلى متغيرات أكثر قوة. حتى الآن، كنا نستخدم متغيرات بسيطة لتخزين الأرقام أو السلاسل حيث يكون لدينا قيمة واحدة في أي متغير. وبدءًا من القوائم، سنُخزِّنُ العديد من القيم في متغير واحد باستخدام مخطط فهرسة لتخزين قيم مختلفة من داخل متغير واحد وتنظيمها واستردادها. ونحن نطلق على هذه المتغيرات متعددة القيم اسم "المجموعات" أو "بُنى البيانات".
الفصل التاسع: القواميس
يُعد قاموس Python أحد أقوى بُنى البيانات. فبدلًا من تمثيل القيم في إحدى القوائم الخطية، تُخزِّنُ القواميس البيانات في صورة أزواج أساسية / أزواج قيم. يمنحنا استخدام الأزواج الأساسية / أزواج القيم "قاعدة بيانات" في الذاكرة في متغير Python واحد.
الفصل العاشر: المجموعات
المجموعات هي بنية بيانات Python الأساسية الثالثة والأخيرة التي سنتناولها. المجموعات هي إصدار بسيط من القوائم. وغالبًا ما نستخدم المجموعات جنبًا إلى جنب مع القواميس لإنجاز مهام متعددة الخطوات مثل الفرز أو التكرار خلال جميع البيانات في أحد القواميس.
التخرُّج
للاحتفال بوصولكم إلى نقطة منتصف الطريق في تخصص «Python للجميع»، فإننا نرحب بكم لحضور حفل تخرُّجنا عبر الإنترنت. وهو حفل ليس طويلًا للغاية، ويتميز بمتحدث في حفل التخرج وخطاب قصير جدًا عن حفل التخرج.

Good to know

Know what's good
, what to watch for
, and possible dealbreakers
Geared towards learners already familiar with Python programming
Covers Python 3, which is current and widely used
Provides a solid foundation in Python data structures, building on learners' existing Python knowledge
Includes interactive materials and a course playground for hands-on practice
Part of a larger 'Python for Everybody' specialization, offering a comprehensive study of Python

Save this course

Save Python بُنى بيانات to your list so you can find it easily later:
Save

Activities

Be better prepared before your course. Deepen your understanding during and after it. Supplement your coursework and achieve mastery of the topics covered in Python بُنى بيانات with these activities:
استعادة مهارة كتابة الكود في Python
سيساعدك ذلك على استعادة مهاراتك في كتابة الكود بـ Python والتي ستحتاجها طوال فترة الدورة التدريبية.
Browse courses on Python
Show steps
  • قم بزيارة موقع Python الرسمي وقراءة وثائق حول أساسيات لغة البرمجة.
  • حل المشكلات البسيطة كتمرين مثل العثور على الحد الأدنى أو الأقصى لقائمة الأرقام.
قراءة كتاب Python Crash Course، الإصدار الثاني بقلم إريك ماتيس
سيساعدك مراجعة هذا الكتاب على تحديث معرفتك بأساسيات بايثون، وتوطيد مفاهيم السلاسل والملفات والقوائم والقواميس والمجموعات في بايثون.
Browse courses on Python
Show steps
  • شراء الكتاب أو استعارته من المكتبة أو تنزيله
  • تخصيص من 60 إلى 90 دقيقة يوميًا لقراءة الكتاب
  • قراءة الفصلين 6 و 7 وتدوين الملاحظات حول المفاهيم الرئيسية
Show all two activities

Career center

Learners who complete Python بُنى بيانات will develop knowledge and skills that may be useful to these careers:
Data Scientist
Data Scientists use their knowledge of statistics, programming, and machine learning to extract insights from data. This course provides a strong foundation in Python, which is a popular programming language for data science. The course covers topics such as data structures, algorithms, and machine learning, which are all essential skills for Data Scientists. Taking this course will help you develop the skills you need to succeed in this field.
Machine Learning Engineer
Machine Learning Engineers are responsible for designing, building, and deploying machine learning models. This course provides a solid foundation in Python, which is a popular programming language for machine learning. The course covers topics such as data structures, algorithms, and machine learning, which are all essential skills for Machine Learning Engineers. Taking this course will help you develop the skills you need to succeed in this field.
Data Analyst
Data Analysts are responsible for collecting, cleaning, and analyzing data to help businesses make informed decisions. This course provides a solid foundation in Python, which is a popular programming language for data analysis. The course covers topics such as data structures, algorithms, and data visualization, which are all essential skills for Data Analysts. Taking this course will help you develop the skills you need to succeed in this field.
Software Engineer
Software Engineers design, develop, and maintain software applications. This course provides a solid foundation in Python, which is a popular programming language for software development. The course covers topics such as data structures, algorithms, and object-oriented programming, which are all essential skills for Software Engineers. Taking this course will help you develop the skills you need to succeed in this field.
Data Engineer
Data Engineers are responsible for building and maintaining the infrastructure that supports data analysis and machine learning. This course provides a solid foundation in Python, which is a popular programming language for data engineering. The course covers topics such as data structures, algorithms, and cloud computing, which are all essential skills for Data Engineers. Taking this course will help you develop the skills you need to succeed in this field.
Web Developer
Web Developers design, develop, and maintain websites. This course provides a solid foundation in Python, which is a popular programming language for web development. The course covers topics such as data structures, algorithms, and web programming, which are all essential skills for Web Developers. Taking this course will help you develop the skills you need to succeed in this field.
Data Visualization Specialist
Data Visualization Specialists use visual representations to communicate data and insights. This course provides a solid foundation in Python, which is a popular programming language for data visualization. The course covers topics such as data structures, algorithms, and data visualization, which are all essential skills for Data Visualization Specialists. Taking this course will help you develop the skills you need to succeed in this field.
Statistician
Statisticians collect, analyze, and interpret data. This course provides a solid foundation in Python, which is a popular programming language for statistics. The course covers topics such as data structures, algorithms, and probability, which are all essential skills for Statisticians. Taking this course will help you develop the skills you need to succeed in this field.
Business Analyst
Business Analysts help businesses understand their data and make better decisions. This course provides a solid foundation in Python, which is a popular programming language for business analysis. The course covers topics such as data structures, algorithms, and data visualization, which are all essential skills for Business Analysts. Taking this course will help you develop the skills you need to succeed in this field.
Data Journalist
Data Journalists use data to tell stories and inform the public. This course provides a solid foundation in Python, which is a popular programming language for data journalism. The course covers topics such as data structures, algorithms, and data visualization, which are all essential skills for Data Journalists. Taking this course will help you develop the skills you need to succeed in this field.
Operations Research Analyst
Operations Research Analysts use mathematical and analytical techniques to solve business problems. This course provides a solid foundation in Python, which is a popular programming language for operations research. The course covers topics such as data structures, algorithms, and optimization, which are all essential skills for Operations Research Analysts. Taking this course will help you develop the skills you need to succeed in this field.
Actuary
Actuaries use mathematical and statistical techniques to assess risk and uncertainty. This course provides a solid foundation in Python, which is a popular programming language for actuarial science. The course covers topics such as data structures, algorithms, and probability, which are all essential skills for Actuaries. Taking this course will help you develop the skills you need to succeed in this field.
Financial Analyst
Financial Analysts help businesses make investment decisions. This course provides a solid foundation in Python, which is a popular programming language for financial analysis. The course covers topics such as data structures, algorithms, and financial modeling, which are all essential skills for Financial Analysts. Taking this course will help you develop the skills you need to succeed in this field.
Risk Analyst
Risk Analysts help businesses identify and manage risks. This course provides a solid foundation in Python, which is a popular programming language for risk analysis. The course covers topics such as data structures, algorithms, and probability, which are all essential skills for Risk Analysts. Taking this course will help you develop the skills you need to succeed in this field.
Quantitative Analyst
Quantitative Analysts use mathematical and statistical techniques to analyze financial data. This course provides a solid foundation in Python, which is a popular programming language for quantitative analysis. The course covers topics such as data structures, algorithms, and financial modeling, which are all essential skills for Quantitative Analysts. Taking this course will help you develop the skills you need to succeed in this field.

Reading list

We've selected 14 books that we think will supplement your learning. Use these to develop background knowledge, enrich your coursework, and gain a deeper understanding of the topics covered in Python بُنى بيانات.
Provides a comprehensive introduction to Python programming, covering basic concepts, data structures, and object-oriented programming. It is written in a clear and concise style, with plenty of examples and exercises to help you learn.
Collection of recipes that provide solutions to common Python programming problems. It great resource for both beginners and experienced programmers.
Guide to writing clear, concise, and effective Python code. It covers topics such as code organization, data structures, and algorithms.
Good choice for beginners who want to learn Python quickly and easily. It covers the basics of Python programming, including data types, variables, and control flow.
Comprehensive reference for Python programming. It covers everything from basic concepts to advanced topics, and great resource for both beginners and experienced programmers.
Comprehensive guide to the Python standard library. It covers everything from basic modules to advanced topics, and great resource for both beginners and experienced programmers.
Guide to using Python for data analysis. It covers topics such as data cleaning, data visualization, and machine learning.
Guide to using Python for natural language processing. It covers topics such as text processing, machine learning, and natural language understanding.
Guide to using Python for machine learning. It covers topics such as data preprocessing, model selection, and model evaluation.
Guide to using Python for deep learning. It covers topics such as neural networks, convolutional neural networks, and recurrent neural networks.
Guide to using Python for financial analysis and modeling. It covers topics such as data cleaning, data visualization, and financial modeling.
Guide to using Python for web development with the Django framework. It covers topics such as creating web applications, managing databases, and deploying web applications.

Share

Help others find this course page by sharing it with your friends and followers:

Similar courses

Here are nine courses similar to Python بُنى بيانات.
المشروع المتقدم لمهندس قاعدة البيانات
Most relevant
Python استخدام قواعد البيانات مع
Most relevant
عملاء قاعدة البيانات
Most relevant
البرمجة في لغة Python
Most relevant
البرمجة للجميع - بدء استخدام بايثون
Most relevant
أساسيات python: برمج لعبة تخمين الرقم من الصفر
Most relevant
لعبة الثعبان عن طريق python:استخدم pygame لتصنع لعبتك...
Most relevant
المشروع المتقدم لتطبيقات iOS
Most relevant
الشبكات العصبية والتعلم العميق
Most relevant
Our mission

OpenCourser helps millions of learners each year. People visit us to learn workspace skills, ace their exams, and nurture their curiosity.

Our extensive catalog contains over 50,000 courses and twice as many books. Browse by search, by topic, or even by career interests. We'll match you to the right resources quickly.

Find this site helpful? Tell a friend about us.

Affiliate disclosure

We're supported by our community of learners. When you purchase or subscribe to courses and programs or purchase books, we may earn a commission from our partners.

Your purchases help us maintain our catalog and keep our servers humming without ads.

Thank you for supporting OpenCourser.

© 2016 - 2024 OpenCourser