When I was an undergraduate I took a course called Linear Systems, which provides background theory for courses like Digital Signal Processing, Control Systems, and Communication Systems. While I did earn a grade of A in the course, I never really understood the purpose of the course beyond it being a prerequisite to other courses that I was required to take.
My goal in this course is to introduce you to digital signal processing in such a way that you not only understand the purpose of the various topics, but that you also see how you can apply the material.
When I was an undergraduate I took a course called Linear Systems, which provides background theory for courses like Digital Signal Processing, Control Systems, and Communication Systems. While I did earn a grade of A in the course, I never really understood the purpose of the course beyond it being a prerequisite to other courses that I was required to take.
My goal in this course is to introduce you to digital signal processing in such a way that you not only understand the purpose of the various topics, but that you also see how you can apply the material.
In order to demonstrate practical applications of digital signal processing, I provide about a dozen Python programs for doing such things as removing noise from audio files, removing noise from images, identifying which phone numbers are pressed on a touch-tone phone, and analyzing temperature data. I go over each program, explaining how it works and how I designed it. I don't assume that you have already programmed using the Python programming language, so I also provide a crash course to get you up to speed.
This course is not for someone wanting a rigorous, theory- and math-heavy course; there are many available options if this is what you are looking for. This isn't to say that we will not use math in this course. I think that there is too much that you need to know that you can't really understand without some math. To help you with the math that we will learn, I review complex numbers and complex exponentials at the beginning of the course. Then as we learn new topics I provide practice problems with my solved answers.
OpenCourser helps millions of learners each year. People visit us to learn workspace skills, ace their exams, and nurture their curiosity.
Our extensive catalog contains over 50,000 courses and twice as many books. Browse by search, by topic, or even by career interests. We'll match you to the right resources quickly.
Find this site helpful? Tell a friend about us.
We're supported by our community of learners. When you purchase or subscribe to courses and programs or purchase books, we may earn a commission from our partners.
Your purchases help us maintain our catalog and keep our servers humming without ads.
Thank you for supporting OpenCourser.