We may earn an affiliate commission when you visit our partners.
Course image
Jousef Murad

Neuronales Netz von Scratch

Enroll now

What's inside

Syllabus

Module 1

Good to know

Know what's good
, what to watch for
, and possible dealbreakers
Beschäftigt sich mit neuronalen Netzwerken, was in der Industrie ein Standard ist
Lehrt neuronale Netzwerke, was den Teilnehmern hilft, KI-Modelle zu erstellen

Save this course

Save Neuronales Netz von Scratch to your list so you can find it easily later:
Save

Activities

Be better prepared before your course. Deepen your understanding during and after it. Supplement your coursework and achieve mastery of the topics covered in Neuronales Netz von Scratch with these activities:
Organize and review course materials
Organizing and reviewing your course materials will help you stay on top of the content and identify areas where you need additional support.
Browse courses on Note-Taking
Show steps
  • Create a system for organizing your notes, assignments, and other course materials
  • Review your materials regularly to reinforce your understanding
  • Identify sections or concepts that you may need to revisit or seek additional support for
Read 'Deep Learning' by Ian Goodfellow, Yoshua Bengio, and Aaron Courville
This comprehensive textbook provides an in-depth overview of the field of deep learning, covering both theoretical foundations and practical applications.
Show steps
  • Read through the chapters systematically, taking notes and highlighting important concepts
  • Work through the exercises and assignments provided in the book
  • Discuss the book's content with peers or a mentor
Review basics of neural networks
Refreshing your foundational knowledge of neural networks will help you better understand and absorb the more advanced concepts covered in this course.
Browse courses on Neural Networks
Show steps
  • Review textbooks or online resources on neural networks
  • Complete practice problems or exercises on basic neural network concepts
  • Discuss neural network fundamentals with a peer or mentor
Three other activities
Expand to see all activities and additional details
Show all six activities
Participate in peer study groups or discussions
Engaging with peers through study groups or discussions can provide diverse perspectives, foster understanding, and improve your overall learning experience.
Show steps
  • Join or form a study group with classmates or fellow learners
  • Meet regularly to discuss course materials, share insights, and work on problems together
  • Participate in online discussions or forums related to the course topics
Implement different neural network architectures
Implementing various neural network architectures will provide you with hands-on experience and a deeper understanding of their strengths and limitations.
Show steps
  • Choose a programming language and framework for neural network development
  • Implement a simple feedforward neural network
  • Experiment with different activation functions, hidden layers, and optimization algorithms
  • Compare the performance of different architectures on a given dataset
Develop a neural network for a specific task
Creating your own neural network for a specific task will allow you to apply the concepts you've learned and gain practical experience.
Browse courses on Machine Learning Projects
Show steps
  • Identify a problem or task that can be solved using a neural network
  • Gather and prepare the necessary data
  • Design and implement a neural network architecture for the task
  • Train and evaluate the neural network
  • Deploy and use the neural network to solve the problem or task

Career center

Learners who complete Neuronales Netz von Scratch will develop knowledge and skills that may be useful to these careers:
Deep Learning Engineer
A Deep Learning Engineer is responsible for designing, developing, and deploying deep learning models. This course provides a comprehensive overview of deep learning concepts and algorithms, and covers the practical skills needed to build and deploy deep learning models in the real world.
Machine Learning Engineer
A Machine Learning Engineer is responsible for designing, developing, and deploying machine learning models. This course provides a comprehensive overview of machine learning concepts and algorithms, and covers the practical skills needed to build and deploy machine learning models in the real world.
Data Scientist
A Data Scientist is responsible for collecting, cleaning, analyzing, and interpreting data in order to provide insights that can inform business decisions. This course provides a solid foundation in the principles of data science, including machine learning and deep learning, and covers the latest techniques used by data scientists in industry today.
Artificial Intelligence Engineer
An Artificial Intelligence Engineer is responsible for designing, developing, and deploying artificial intelligence systems. This course provides a comprehensive overview of artificial intelligence concepts and algorithms, and covers the practical skills needed to build and deploy artificial intelligence systems in the real world.
Software Engineer
A Software Engineer is responsible for designing, developing, and maintaining software systems. This course provides a strong foundation in the principles of software engineering, and covers the latest techniques used by software engineers in industry today.
Data Analyst
A Data Analyst is responsible for collecting, cleaning, and analyzing data in order to provide insights that can inform business decisions. This course provides a solid foundation in the principles of data analysis, and covers the latest techniques used by data analysts in industry today.
Operations Research Analyst
An Operations Research Analyst is responsible for developing and using mathematical and statistical models to solve complex business problems. This course provides a strong foundation in the principles of operations research, and covers the latest techniques used by operations research analysts in industry today.
Quantitative Analyst
A Quantitative Analyst is responsible for developing and using mathematical and statistical models to analyze financial data. This course provides a strong foundation in the principles of quantitative analysis, and covers the latest techniques used by quantitative analysts in industry today.
Actuary
An Actuary is responsible for assessing and managing financial risks. This course provides a strong foundation in the principles of actuarial science, and covers the latest techniques used by actuaries in industry today.
Financial Analyst
A Financial Analyst is responsible for analyzing financial data and making recommendations on investments. This course provides a strong foundation in the principles of financial analysis, and covers the latest techniques used by financial analysts in industry today.
Business Analyst
A Business Analyst is responsible for analyzing business processes and recommending improvements. This course provides a strong foundation in the principles of business analysis, and covers the latest techniques used by business analysts in industry today.
Management Consultant
A Management Consultant is responsible for advising businesses on how to improve their operations. This course provides a strong foundation in the principles of management consulting, and covers the latest techniques used by management consultants in industry today.
Product Manager
A Product Manager is responsible for managing the development and launch of new products. This course provides a strong foundation in the principles of product management, and covers the latest techniques used by product managers in industry today.
Project Manager
A Project Manager is responsible for planning, executing, and closing projects. This course provides a strong foundation in the principles of project management, and covers the latest techniques used by project managers in industry today.
Sales Engineer
A Sales Engineer is responsible for selling and supporting technical products. This course provides a strong foundation in the principles of sales engineering, and covers the latest techniques used by sales engineers in industry today.

Reading list

We've selected 13 books that we think will supplement your learning. Use these to develop background knowledge, enrich your coursework, and gain a deeper understanding of the topics covered in Neuronales Netz von Scratch.
Dieses Buch bietet einen umfassenden Überblick über Deep Learning, einschließlich der Grundlagen, Architekturen und Anwendungen. Es ist ein wertvolles Referenzwerk für alle, die ihr Wissen über Deep Learning vertiefen möchten.
Dieses Buch bietet einen umfassenden Überblick über Mustererkennung und Machine Learning. Es ist ein wertvolles Referenzwerk für alle, die ihr Wissen über Mustererkennung und Machine Learning vertiefen möchten.
Dieses Buch bietet einen umfassenden Überblick über Sprach- und Sprachverarbeitung, einschließlich der Grundlagen, Techniken und Anwendungen. Es ist ein wertvolles Referenzwerk für alle, die ihr Wissen über Sprach- und Sprachverarbeitung vertiefen möchten.
Dieses Buch bietet einen umfassenden Überblick über Informationstheorie, Inferenz und Lernalgorithmen. Es ist ein wertvolles Referenzwerk für alle, die ihr Wissen über Informationstheorie, Inferenz und Lernalgorithmen vertiefen möchten.
Dieses Buch bietet einen umfassenden Überblick über Bayes'sche Argumentation und Machine Learning. Es ist ein wertvolles Referenzwerk für alle, die ihr Wissen über Bayes'sche Argumentation und Machine Learning vertiefen möchten.
Dieses Buch bietet einen umfassenden Überblick über statistische Methoden für Machine Learning. Es ist ein wertvolles Referenzwerk für alle, die ihr Wissen über statistische Methoden im Machine Learning vertiefen möchten.
Dieses Buch bietet einen umfassenden Überblick über probabilistische grafische Modelle. Es ist ein wertvolles Referenzwerk für alle, die ihr Wissen über probabilistische grafische Modelle vertiefen möchten.
Dieses Buch bietet einen umfassenden Überblick über Computervision, einschließlich der Grundlagen, Techniken und Anwendungen. Es ist ein wertvolles Referenzwerk für alle, die ihr Wissen über Computervision vertiefen möchten.
Dieses Buch bietet einen umfassenden Überblick über Deep Reinforcement Learning, einschließlich der Grundlagen, Architekturen und Anwendungen. Es ist ein wertvolles Referenzwerk für alle, die ihr Wissen über Deep Reinforcement Learning vertiefen möchten.
Dieses Buch bietet eine praktische Einführung in die Verarbeitung natürlicher Sprache mit Python. Es ist eine wertvolle Ressource für alle, die ihre praktischen Fähigkeiten in der Verarbeitung natürlicher Sprache verbessern möchten.
Dieses Buch bietet eine praktische Einführung in Machine Learning mit Python-Bibliotheken wie Scikit-Learn, Keras und TensorFlow. Es ist eine wertvolle Ressource für alle, die ihre praktischen Fähigkeiten im Machine Learning verbessern möchten.
Dieses Buch bietet eine praktische Einführung in Deep Learning mit Python. Es ist eine wertvolle Ressource für alle, die ihre praktischen Fähigkeiten im Deep Learning verbessern möchten.

Share

Help others find this course page by sharing it with your friends and followers:

Similar courses

Similar courses are unavailable at this time. Please try again later.
Our mission

OpenCourser helps millions of learners each year. People visit us to learn workspace skills, ace their exams, and nurture their curiosity.

Our extensive catalog contains over 50,000 courses and twice as many books. Browse by search, by topic, or even by career interests. We'll match you to the right resources quickly.

Find this site helpful? Tell a friend about us.

Affiliate disclosure

We're supported by our community of learners. When you purchase or subscribe to courses and programs or purchase books, we may earn a commission from our partners.

Your purchases help us maintain our catalog and keep our servers humming without ads.

Thank you for supporting OpenCourser.

© 2016 - 2024 OpenCourser