We may earn an affiliate commission when you visit our partners.
Course image
Google Cloud Training

Ce cours présente les produits et services Google Cloud pour le big data et le machine learning compatibles avec le cycle de vie "des données à l'IA". Il explore les processus, défis et avantages liés à la création d'un pipeline de big data et de modèles de machine learning avec Vertex AI sur Google Cloud.

Enroll now

What's inside

Syllabus

Présentation du cours
Cette section accueille les participants au cours Big Data and Machine Learning Fundamentals et leur offre un aperçu de sa structure et de ses objectifs.
Read more
Big data et machine learning sur Google Cloud
Cette section aborde les composants clés de l'infrastructure Google Cloud. Elle présente un grand nombre des produits et services Google Cloud pour le big data et le machine learning, tous compatibles avec le cycle de vie "des données à l'IA".
Ingénierie des données pour la diffusion de données
Cette section présente la solution de Google Cloud pour gérer les flux de données. Elle examine un pipeline de bout en bout, y compris l'ingestion de données avec Pub/Sub, le traitement des données via Dataflow, et la visualisation des données avec Looker et Data Studio.
Big data avec BigQuery
Cette section présente BigQuery, l'entrepôt de données sans serveur entièrement géré de Google. Elle aborde également BigQuery ML, ainsi que les processus et les commandes clés permettant de créer des modèles de machine learning personnalisés.
Options de machine learning sur Google Cloud
Cette section explore quatre options différentes pour créer des modèles de machine learning sur Google Cloud. Elle présente également Vertex AI, la plate-forme unifiée de Google permettant de créer des projets de ML et de gérer leur cycle de vie.
Workflow de machine learning avec Vertex AI
Cette section se concentre sur les trois phases clés d'un workflow de machine learning dans Vertex AI : préparation des données, entraînement du modèle et évaluation du modèle. Les participants ont l'occasion de s'entraîner à créer un modèle de machine learning avec AutoML.
Résumé du cours
Cette section revient sur les sujets abordés pendant le cours. Il oriente également les participants vers des ressources supplémentaires qui leur permettront d'approfondir leurs connaissances.

Good to know

Know what's good
, what to watch for
, and possible dealbreakers
Correspond aux chefs de projet, data scientist et analystes, qui souhaitent exploiter et analyser des volumes élevés de données, créer et déployer des modèles de machine learning

Save this course

Save Google Cloud Big Data and Machine Learning Fundamentals en Français to your list so you can find it easily later:
Save

Reviews summary

Great for hands-on, needs improvement

This course excels at providing hands-on learning experiences and presenting well-structured content. However, some students have experienced frustrating bugs within quizzes and labs that have hindered their progress. The relevance of the certificate has also been brought into question, as it is not heavily tied to assessment scores.
Well-structured and informative content
"Les cours sont bien faits."
Valuable hands-on learning opportunities
"J'ai particulierement apprécié l'aspect "Atelier" qui m'a permis de me confronter factuellement à de la delivrance de resultats mesurables via les immenses ressources informatiques de Google Cloud Platform"
Certificate may not accurately reflect learning
"très bon cours mais certificat sans valeurs : les quiz ne sont pas utilisés pour l'attribution du certificat et les ateliers sont validés après un certain temps passé dans le lab sans réelle évaluation"
Bugs and issues within quizzes and labs
"Pity there are so many bugs in the quizz (and for months, it seems!), the content in itself is very good, imho."
"le code pySpark dans l'un des ateliers n'est pas expliqué du tout."

Activities

Be better prepared before your course. Deepen your understanding during and after it. Supplement your coursework and achieve mastery of the topics covered in Google Cloud Big Data and Machine Learning Fundamentals en Français with these activities:
Review Advanced Computing Concepts
Review fundamental principles of advanced computing concepts such as distributed systems and cloud computing to strengthen your foundation for the course.
Show steps
  • Review textbooks or online resources
  • Summarize key concepts
  • Complete practice exercises
Explore Google Cloud Platform Tutorials
Familiarize yourself with Google Cloud Platform services by following guided tutorials to gain hands-on experience.
Browse courses on Google Cloud Platform
Show steps
  • Identify relevant tutorials
  • Complete tutorials
  • Experiment with different services
Join Study Groups or Online Forums
Engage with peers to discuss course material, share perspectives, and get support.
Show steps
  • Identify relevant study groups or forums
  • Participate in discussions
  • Share knowledge and ask questions
Five other activities
Expand to see all activities and additional details
Show all eight activities
Solve Machine Learning Practice Problems
Enhance your problem-solving skills by practicing machine learning algorithms and techniques through online platforms or practice exercises.
Browse courses on Machine Learning
Show steps
  • Identify reputable platforms or resources
  • Select problems aligned with course concepts
  • Solve problems and review solutions
Attend Industry Meetups or Conferences
Network with professionals in the field to learn about industry trends, share ideas, and explore career opportunities.
Show steps
  • Identify relevant meetups or conferences
  • Prepare for networking opportunities
  • Attend and engage in discussions
Contribute to Open-Source Machine Learning Projects
Enhance your knowledge and gain practical experience by contributing to open-source machine learning projects.
Browse courses on Machine Learning
Show steps
  • Identify relevant projects
  • Read documentation and code
  • Identify areas for contribution
  • Propose and implement changes
Design a Data Management Plan
Develop a comprehensive plan outlining your approach to data management, including data storage, processing, and security.
Browse courses on Data Management
Show steps
  • Gather data requirements
  • Identify data sources
  • Design data storage and processing architecture
  • Define data security measures
  • Document your plan
Create a Portfolio of Machine Learning Projects
Showcase your skills and understanding by creating a portfolio of machine learning projects that demonstrate your ability to apply course concepts.
Browse courses on Machine Learning
Show steps
  • Select projects that highlight different machine learning techniques
  • Develop and implement projects
  • Document and present your projects

Career center

Learners who complete Google Cloud Big Data and Machine Learning Fundamentals en Français will develop knowledge and skills that may be useful to these careers:
Machine Learning Engineer
Machine Learning Engineers build, test, and deploy machine learning models to solve real-world problems. Google Cloud's Big Data and Machine Learning Fundamentals provides a solid foundation in these tasks, specifically on its Vertex AI platform.
Artificial Intelligence Engineer
Artificial Intelligence Engineers design, develop, and maintain AI systems. Google Cloud's Big Data and Machine Learning Fundamentals provides a solid foundation in machine learning concepts and technologies for those seeking this role.
Machine Learning Operations Engineer
Machine Learning Operations Engineers maintain and monitor machine learning models in production. Google Cloud's Big Data and Machine Learning Fundamentals would provide valuable knowledge of machine learning pipelines for this role.
Data Scientist
Data Scientists use scientific methods and algorithms to extract knowledge and insights from data. Google Cloud's Big Data and Machine Learning Fundamentals can provide a solid foundation for a Data Scientist, covering topics like data engineering, model training, and evaluation.
Data Analyst
Data Analysts explore, transform, and visualize raw data. They present findings to stakeholders in an understandable, usable format. Google Cloud's Big Data and Machine Learning Fundamentals will help you build a foundation in these areas.
Business Analyst
Business Analysts analyze data and provide insights to help businesses make informed decisions. Google Cloud's Big Data and Machine Learning Fundamentals can provide valuable knowledge in data handling and interpretation for this role.
Data Visualization Specialist
Data Visualization Specialists translate data into visual representations to make it more accessible and understandable. Google Cloud's Big Data and Machine Learning Fundamentals provides knowledge in data visualization tools and techniques that can be useful for this role.
Research Scientist
Research Scientists conduct research in various fields, including data science and machine learning. Google Cloud's Big Data and Machine Learning Fundamentals can provide a foundation for those seeking this role, introducing them to key concepts and technologies.
Data Engineer
Data Engineers design, build, and maintain data processing systems. They play a crucial role in making data available and usable for analysis. Knowledge gained by completing Google Cloud's Big Data and Machine Learning Fundamentals may be useful in this role.
Quantitative Analyst
Quantitative Analysts use mathematical and statistical models to analyze financial data. Google Cloud's Big Data and Machine Learning Fundamentals provides a foundation in data analysis and machine learning which may be helpful for those seeking this role.
Statistician
Statisticians collect, analyze, interpret, and present data. Google Cloud's Big Data and Machine Learning Fundamentals provides a foundation in statistical concepts and machine learning techniques that may be helpful for this role.
Data Architect
Data Architects design and manage data systems. Google Cloud's Big Data and Machine Learning Fundamentals may be helpful for those seeking this role, as it covers topics such as data modeling, data quality, and data governance.
Software Engineer
Software Engineers design, develop, and maintain software systems. Google Cloud's Big Data and Machine Learning Fundamentals may be useful for Software Engineers as it provides knowledge in managing and processing large datasets and implementing machine learning models.
Database Administrator
Database Administrators manage and maintain databases. Google Cloud's Big Data and Machine Learning Fundamentals may be useful for those seeking this role, as it provides knowledge in data management and processing.
Product Manager
Product Managers are responsible for the development and launch of new products and features. The knowledge gained in Google Cloud's Big Data and Machine Learning Fundamentals may be helpful for Product Managers to understand data-driven decision-making.

Reading list

We've selected 11 books that we think will supplement your learning. Use these to develop background knowledge, enrich your coursework, and gain a deeper understanding of the topics covered in Google Cloud Big Data and Machine Learning Fundamentals en Français.
Provides a comprehensive overview of artificial intelligence and its applications in business.
Provides a comprehensive overview of machine learning from a probabilistic perspective.

Share

Help others find this course page by sharing it with your friends and followers:

Similar courses

Here are nine courses similar to Google Cloud Big Data and Machine Learning Fundamentals en Français.
Serverless Machine Learning with Tensorflow on Google...
Most relevant
Serverless Data Analysis with Google BigQuery and Cloud...
Most relevant
Leveraging Unstructured Data with Cloud Dataproc on...
Most relevant
Building Resilient Streaming Systems on Google Cloud...
Most relevant
Smart Analytics, Machine Learning, and AI on GCP en...
Most relevant
How Google does Machine Learning en Français
Most relevant
Initiation Pratique à Python
Most relevant
Google Cloud Product Fundamentals en Français
Most relevant
Machine Learning Operations (MLOps): Getting Started -...
Most relevant
Our mission

OpenCourser helps millions of learners each year. People visit us to learn workspace skills, ace their exams, and nurture their curiosity.

Our extensive catalog contains over 50,000 courses and twice as many books. Browse by search, by topic, or even by career interests. We'll match you to the right resources quickly.

Find this site helpful? Tell a friend about us.

Affiliate disclosure

We're supported by our community of learners. When you purchase or subscribe to courses and programs or purchase books, we may earn a commission from our partners.

Your purchases help us maintain our catalog and keep our servers humming without ads.

Thank you for supporting OpenCourser.

© 2016 - 2024 OpenCourser