Case Studies in Functional Genomics

We will explain how to start with raw data, and perform the standard processing and normalization steps to get to the point where one can investigate relevant biological questions. Throughout the case studies, we will make use of exploratory plots to get a general overview of the shape of the data and the result of the experiment. We start with RNA-seq data analysis covering basic concepts of RNA-seq and a first look at FASTQ files. We will also go over quality control of FASTQ files; aligning RNA-seq reads; visualizing alignments and move on to analyzing RNA-seq at the gene-level: counting reads in genes; Exploratory Data Analysis and variance stabilization for counts; count-based differential expression; normalization and batch effects. Finally, we cover RNA-seq at the transcript-level: inferring expression of transcripts (i.e. alternative isoforms); differential exon usage. We will learn the basic steps in analyzing DNA methylation data, including reading the raw data, normalization, and finding regions of differential methylation across multiple samples. The course will end with a brief description of the basic steps for analyzing ChIP-seq datasets, from read alignment, to peak calling, and assessing differential binding patterns across multiple samples.

Given the diversity in educational background of our students we have divided the series into seven parts. You can take the entire series or individual courses that interest you. If you are a statistician you should consider skipping the first two or three courses, similarly, if you are biologists you should consider skipping some of the introductory biology lectures. Note that the statistics and programming aspects of the class ramp up in difficulty relatively quickly across the first three courses. By the third course will be teaching advanced statistical concepts such as hierarchical models and by the fourth advanced software engineering skills, such as parallel computing and reproducible research concepts.

These courses make up 2 XSeries and are self-paced:

PH525.1x: Statistics and R for the Life Sciences

PH525.2x: Introduction to Linear Models and Matrix Algebra

PH525.3x: Statistical Inference and Modeling for High-throughput Experiments

PH525.4x: High-Dimensional Data Analysis

PH525.5x: Introduction to Bioconductor: annotation and analysis of genomes and genomic assays

PH525.6x: High-performance computing for reproducible genomics

PH525.7x: Case studies in functional genomics

This class was supported in part by NIH grant R25GM114818.

HarvardX requires individuals who enroll in its courses on edX to abide by the terms of the edX honor code. HarvardX will take appropriate corrective action in response to violations of the edX honor code, which may include dismissal from the HarvardX course; revocation of any certificates received for the HarvardX course; or other remedies as circumstances warrant. No refunds will be issued in the case of corrective action for such violations. Enrollees who are taking HarvardX courses as part of another program will also be governed by the academic policies of those programs.

HarvardX pursues the science of learning. By registering as an online learner in an HX course, you will also participate in research about learning. Read our research statement to learn more.

Harvard University and HarvardX are committed to maintaining a safe and healthy educational and work environment in which no member of the community is excluded from participation in, denied the benefits of, or subjected to discrimination or harassment in our program. All members of the HarvardX community are expected to abide by Harvard policies on nondiscrimination, including sexual harassment, and the edX Terms of Service. If you have any questions or concerns, please contact [email protected] and/or report your experience through the edX contact form.

Get Details and Enroll Now

OpenCourser is an affiliate partner of edX.

Get a Reminder

Not ready to enroll yet? We'll send you an email reminder for this course

Send to:

edX

&

Harvard University

Rating 3.0 based on 1 ratings
Length 4 weeks
Effort 2 - 4 hours per week
Starts May 30 (34 weeks ago)
Cost $49
From Harvard University, HarvardX via edX
Instructors Rafael Irizarry, Michael Love
Free Limited Content
Language English
Subjects Data Science Science
Tags Data Analysis & Statistics Biology & Life Sciences Science

Get a Reminder

Get an email reminder about this course

Send to:

What people are saying

We analyzed reviews for this course to surface learners' thoughts about it

course is similar in one review

Back then they were 4 one-week courses, of which I took three, so I will review those modules below and assume that the material in the new course is similar).

review those modules in one review

back then in one review

modules below in one review

new course in one review

one-week courses in one review

Careers

An overview of related careers and their average salaries in the US. Bars indicate income percentile.

CSR Raw Materials $55k

Raw/Pack Buyer $69k

Raw Materials Chemist 1 $71k

Raw Material Analyst $71k

Raw Materials Buyer 1 $73k

Buyer - Raw Materials $75k

Raw Material Rep $76k

Raw Materials Purchasing $79k

Supervisor Raw Material Buyer $88k

Buyer u2013 Raw Materials $96k

Operations Planning - Raw Materials $98k

Raw Materials Buyer 4 $100k

Write a review

Your opinion matters. Tell us what you think.

edX

&

Harvard University

Rating 3.0 based on 1 ratings
Length 4 weeks
Effort 2 - 4 hours per week
Starts May 30 (34 weeks ago)
Cost $49
From Harvard University, HarvardX via edX
Instructors Rafael Irizarry, Michael Love
Free Limited Content
Language English
Subjects Data Science Science
Tags Data Analysis & Statistics Biology & Life Sciences Science