Este curso aborda o fluxo de trabalho de machine learning no dia a dia de forma prática: um estudo de caso em que uma equipe tem vários casos de uso e exigências comerciais em ML. A equipe precisa conhecer as ferramentas adequadas para o gerenciamento e a governança de dados, além de saber qual a melhor abordagem para o processamento de dados: desde fornecer uma visão geral do Dataflow e do Dataprep até usar o BigQuery para tarefas pré-processadas.
Este curso aborda o fluxo de trabalho de machine learning no dia a dia de forma prática: um estudo de caso em que uma equipe tem vários casos de uso e exigências comerciais em ML. A equipe precisa conhecer as ferramentas adequadas para o gerenciamento e a governança de dados, além de saber qual a melhor abordagem para o processamento de dados: desde fornecer uma visão geral do Dataflow e do Dataprep até usar o BigQuery para tarefas pré-processadas.
A equipe tem três opções para criar modelos de machine learning em dois casos de uso específicos. Neste curso, você vai entender por que uma equipe escolhe o AutoML, o BigQuery ML ou o treinamento personalizado para alcançar seus objetivos. O curso aborda o treinamento personalizado de forma detalhada. Descrevemos os requisitos para treinamento personalizado, desde a estrutura e o armazenamento do código de treinamento, além do carregamento de grandes conjuntos de dados, até a exportação de um modelo de treinamento.
Você vai desenvolver um modelo de treinamento personalizado para machine learning, que permite criar uma imagem de contêiner conhecendo pouco do Docker.
No estudo de caso, a equipe analisa os ajustes de hiperparâmetros usando o Vertex Vizier e como esse recurso pode melhorar o desempenho do modelo. Para mais detalhes sobre as melhorias no modelo, vamos nos aprofundar na teoria sobre regularização, como lidar com esparsidade, além de outros conceitos e princípios importantes. Para finalizar, mostramos uma visão geral sobre a previsão e o monitoramento de modelos, além de como usar a Vertex AI para gerenciar modelos de ML.
OpenCourser helps millions of learners each year. People visit us to learn workspace skills, ace their exams, and nurture their curiosity.
Our extensive catalog contains over 50,000 courses and twice as many books. Browse by search, by topic, or even by career interests. We'll match you to the right resources quickly.
Find this site helpful? Tell a friend about us.
We're supported by our community of learners. When you purchase or subscribe to courses and programs or purchase books, we may earn a commission from our partners.
Your purchases help us maintain our catalog and keep our servers humming without ads.
Thank you for supporting OpenCourser.