L’objectif principal du MOOC Apprivoiser l'Apprentissage Automatique est de vous présenter les concepts importants de manière simplifiée, puis de les pratiquer à l’aide de 7 tutoriels en Python sur l’application en ligne Colab accessible gratuitement. Le niveau théorique est ajusté pour mettre l’emphase sur les principes des méthodes présentées et illustrées avec des exemples concrets. Il y a peu de démonstrations mathématiques avancées.
Pourquoi suivre ce MOOC en Apprentissage Automatique (AA)?
L’objectif principal du MOOC Apprivoiser l'Apprentissage Automatique est de vous présenter les concepts importants de manière simplifiée, puis de les pratiquer à l’aide de 7 tutoriels en Python sur l’application en ligne Colab accessible gratuitement. Le niveau théorique est ajusté pour mettre l’emphase sur les principes des méthodes présentées et illustrées avec des exemples concrets. Il y a peu de démonstrations mathématiques avancées.
Pourquoi suivre ce MOOC en Apprentissage Automatique (AA)?
Vous serez initié à toutes les étapes à effectuer lors d’un projet en AA. Vous voulez prédire la pression à l’intérieur d’une turbine en fonction des données de multiples senseurs? C’est de la régression! Vous voulez prédire si un patient est atteint ou non de diabète en fonction des résultats d’un examen médical? C’est de la classification! Vous voulez regrouper les clients en différents segments? C’est du regroupement de données! Il y a de nombreuses applications dans une multitude de domaines.
Pour bien appliquer l’AA dans un projet, il faut d’abord comprendre l’importance des données, comment les nettoyer afin de les mettre en valeur, puis quelle méthode en AA permettrait d’extraire la bonne information.
Le cours est divisé en sept modules que vous pourrez suivre à votre rythme. Vous pourrez tester votre compréhension avec de la rétroaction au moyen d’un questionnaire dans chaque module.
Ce MOOC résulte d’une collaboration entre l’Institut de valorisation des données (IVADO) de l’Université de Montréal, l’Institut intelligence et données (IID) de l’Université Laval, à Québec, et Mila - Institut québécois d’intelligence artificielle.
Le contenu a été développé par des professeurs, scientifiques des données, des informaticiens et ingénieurs ayant de l’expérience en R et D académique et industrielle.
Dans ce MOOC, le genre masculin est utilisé comme générique, dans le seul but de ne pas alourdir le texte.
OpenCourser helps millions of learners each year. People visit us to learn workspace skills, ace their exams, and nurture their curiosity.
Our extensive catalog contains over 50,000 courses and twice as many books. Browse by search, by topic, or even by career interests. We'll match you to the right resources quickly.
Find this site helpful? Tell a friend about us.
We're supported by our community of learners. When you purchase or subscribe to courses and programs or purchase books, we may earn a commission from our partners.
Your purchases help us maintain our catalog and keep our servers humming without ads.
Thank you for supporting OpenCourser.