We may earn an affiliate commission when you visit our partners.
Course image
Jean-Philippe Ansermet

Ces quelques leçons de mécanique lagrangienne font partie d'un cours de formation de base en mécanique Newtonienne présenté sous la forme d'un MOOC en quatre parties :

1. Lois de Newton

Read more

Ces quelques leçons de mécanique lagrangienne font partie d'un cours de formation de base en mécanique Newtonienne présenté sous la forme d'un MOOC en quatre parties :

1. Lois de Newton

https://www.coursera.org/learn/mecanique-newton

2. Mécanique du point matériel

https://www.coursera.org/learn/mecanique-point-materiel

3. Mécanique du Solide Indéformable

https://www.coursera.org/learn/mecanique-solide

4. Mécanique Lagrangienne

Le formalisme de Lagrange permet une résolution efficace de problèmes complexes de mécanique. Il permet aussi d'apporter un éclairage plus fondamental sur les lois de conservation (théorème de Noether). A titre d'illustration de la méthode de Lagrange, on traitera le problème très important des oscillateurs harmoniques couplés, exprimé comme un problème de valeurs propres et de vecteurs propres. On termine avec un formalisme permettant d'analyser les résonances paramétriques, notion illustrée par l'expérience montrant la stabilité d'un pendule inversé forcé.

Enroll now

Two deals to help you save

We found two deals and offers that may be relevant to this course.
Save money when you learn. All coupon codes, vouchers, and discounts are applied automatically unless otherwise noted.

What's inside

Syllabus

Méthode de Lagrange
La méthode de Lagrange permet de résoudre de manière très efficace des problèmes d'une grande variété en utilisant des coordonnées généralisées. Ici, les équations de Lagrange sont démontrées pour des systèmes de points matériels soumis à des contraintes qui s'expriment sous la forme d'équations pour les coordonnées généralisées. Une généralisation sera vue plus loin.
Read more
Application du formalisme de Lagrange
La méthode de Lagrange permet d'obtenir les lois de conservations de la quantité de mouvement et du moment cinétique comme la conséquence de symétries fondamentales. On va voir aussi qu'on peut résumer toute la mécanique sous la forme d'un principe de minimisation d'une fonction qu'on appellera l'action. Il s'agit d'un principe dit "variationnel". Comme il s'agit de quelque chose de tout à fait nouveau, on va développer un sens physique de tels principes variationnels en considérant des expériences simples et quelques exercices.
Systèmes vibratoires discrets et pendules couplés
Les systèmes vibratoires couplés se retrouvent dans toutes sortes de contextes en physique et jouent un rôle très important en ingénierie. L'étude d'oscillateurs couplés permet de mettre en jeu les concepts de valeurs propres et de vecteurs propres qu'on devait avoir vu dans un cours d'algèbre linéaire.
Résonance paramétrique
Quoi de plus simple qu'un enfant qui fait osciller la balançoire sur laquelle il se tient en pliant les genoux au bon rythme ? Et pourtant, il s'agit là d'un problème de mécanique des systèmes non-linéaires dont l'analyse nécessite de nouvelles approches. Ces problèmes exprimés par les équations dites de "Hill" ou de "Mathieu" se retrouvent dans toutes sortes de contextes, notamment en physique de la matière condensée.
Principe de relativité (optionnel)
Partant des concepts vu à la leçon 15 sur les changements de référentiel, on rappelle le principe de relativité de Galilée. Avec une condition supplémentaire sur la vitesse de la lumière, on voit qu'on a un problème et qu'il faut changer la façon de relier les coordonnées liées à deux référentiels d'inertie en translation uniforme l'un par rapport à l'autre.
Cinématique relativiste (optionnel)
Dans cette introduction à la cinématique relativiste, on applique des principes de symétrie très généraux pour arriver aux célèbres transformations de Lorentz. Avec elles, on explique ce qu'on entend par contraction des longueurs et dilatation du temps.
Dynamique relativiste (optionnel)
On prend le point de vue d'induire par des arguments relativistes la relation qui doit exister entre la quantité de mouvement et la vitesse d'un point matériel. L'introduction d'un quadri-vecteur quantité de mouvement aboutit à la plus célèbre des équations de la physique : E = mc^2. On évoquera aussi la notion de photon.
Clôture
Evaluation du cours. Futurs développements

Good to know

Know what's good
, what to watch for
, and possible dealbreakers
Covers Lagrangian mechanics, which is an efficient method to solve complex mechanics problems
Taught by Jean-Philippe Ansermet, an expert in mechanics
Suitable for learners with a background in Newtonian mechanics
Requires understanding of linear algebra for the section on coupled oscillators
Includes an optional section on the principle of relativity

Save this course

Save Mécanique Lagrangienne to your list so you can find it easily later:
Save

Reviews summary

Lagrangian mechanics course

The majority of students rate this course very well citing that the materials and lessons are valuable. Some students complain of a lack of support from the instructor, but do not fault the course materials.
The course is well-received.
"Cours d'un très bon niveau"
"Merci. Beau cours, très pédagogique"
Some students complain of lack of support from the instructor.
"Appaling teaching! One cannot teach physics by reading slides"

Activities

Be better prepared before your course. Deepen your understanding during and after it. Supplement your coursework and achieve mastery of the topics covered in Mécanique Lagrangienne with these activities:
Review basic concepts of Newtonian mechanics
Reacquaint yourself with the fundamental principles of Newtonian mechanics to strengthen your foundation for Lagrangian mechanics.
Browse courses on Newtonian Mechanics
Show steps
  • Review Newton's laws of motion and their applications.
  • Recall concepts of kinematics, including displacement, velocity, and acceleration.
  • Brush up on work, energy, and power.
Solve practice problems on Lagrangian mechanics
Deepen your understanding of Lagrangian mechanics by engaging in targeted practice problems.
Show steps
  • Find equations of motion using Lagrangian formulation.
  • Apply Lagrangian mechanics to solve problems involving constraints.
  • Use Lagrangian mechanics to analyze oscillatory and coupled systems.
Participate in a study group or online forum discussions on Lagrangian mechanics
Enhance your learning through collaborative discussions with peers, exchanging insights and resolving queries on Lagrangian mechanics.
Show steps
  • Join a study group or identify relevant online forums focused on Lagrangian mechanics.
  • Actively participate in discussions, sharing your understanding and seeking clarification from others.
  • Reflect on the discussions and incorporate new perspectives into your own understanding.
Five other activities
Expand to see all activities and additional details
Show all eight activities
Develop a visual representation of key concepts in Lagrangian mechanics
Solidify your understanding by creating visual aids that illustrate the key principles of Lagrangian mechanics.
Show steps
  • Identify the core concepts you want to represent visually.
  • Choose an appropriate visual format, such as diagrams, flowcharts, or animations.
  • Create the visual representation, ensuring clarity and accuracy.
Compile a study guide on Lagrangian mechanics
Reinforce your learning by creating a comprehensive study guide that summarizes the key concepts and equations of Lagrangian mechanics.
Show steps
  • Organize your notes, assignments, and other course materials by topic.
  • Summarize the main concepts and equations for each topic in a concise and clear manner.
  • Include practice problems and examples to illustrate the application of Lagrangian mechanics.
Explore online tutorials on advanced topics in Lagrangian mechanics
Expand your knowledge by delving into specialized topics in Lagrangian mechanics through guided tutorials.
Show steps
  • Identify reputable online resources offering tutorials on advanced Lagrangian mechanics concepts.
  • Select tutorials that align with your interests and learning goals.
  • Follow the tutorials, taking notes and experimenting with the provided examples.
Attend a workshop or seminar on advanced applications of Lagrangian mechanics
Gain exposure to cutting-edge research and practical applications of Lagrangian mechanics through specialized workshops or seminars.
Show steps
  • Identify workshops or seminars that align with your interests in Lagrangian mechanics.
  • Register and attend the event, actively participating in discussions and taking notes.
  • Engage with experts in the field, asking questions and seeking guidance.
Contribute to open-source projects related to Lagrangian mechanics
Apply your understanding of Lagrangian mechanics by contributing to real-world projects and engaging with a global community of developers.
Show steps
  • Identify open-source projects that utilize Lagrangian mechanics.
  • Review the project documentation and codebase to understand its goals and implementation.
  • Contribute bug fixes, feature enhancements, or documentation improvements to the project.

Career center

Learners who complete Mécanique Lagrangienne will develop knowledge and skills that may be useful to these careers:
Theoretical Physicist
Theoretical Physicists aim to develop, understand, and explain the fundamental physical laws that govern our universe and nature. Lagrange mechanics, a formalism that allows for complex physics problems to be solved using generalized coordinates, is foundational to this field. This course provides a rigorous foundation in Lagrange mechanics, preparing you to analyze and solve problems in theoretical physics.
Mathematical Physicist
Mathematical Physicists use advanced mathematical techniques to solve problems in physics. Lagrange mechanics is a key tool in their toolkit, enabling them to model and analyze complex physical systems. This course will equip you with the mathematical expertise necessary to succeed in mathematical physics, particularly in areas that involve Lagrange mechanics.
Aerospace Engineer
Aerospace Engineers design, develop, and test aircraft, spacecraft, and related systems. Lagrange mechanics is widely used in aerospace engineering to analyze and optimize the dynamics of aircraft and spacecraft. By taking this course, you will gain a strong foundation in Lagrange mechanics, which is essential for a successful career in aerospace engineering.
Mechanical Engineer
Mechanical Engineers design, develop, and test mechanical systems, such as engines, robots, and machinery. Lagrange mechanics is a fundamental tool in mechanical engineering, as it allows engineers to analyze and optimize the dynamics of mechanical systems. This course will provide you with a strong foundation in Lagrange mechanics, which is essential for a successful career in mechanical engineering.
Robotics Engineer
Robotics Engineers design, develop, and test robots. Lagrange mechanics is a key tool in robotics engineering, as it allows engineers to analyze and optimize the dynamics of robots. This course will provide you with a strong foundation in Lagrange mechanics, which is essential for a successful career in robotics engineering.
Civil Engineer
Civil Engineers design, construct, and maintain infrastructure, such as bridges, buildings, and roads. Lagrange mechanics is used in civil engineering to analyze and optimize the dynamics of structures. This course will provide you with a strong foundation in Lagrange mechanics, which is essential for a successful career in civil engineering.
Chemical Engineer
Chemical Engineers design, develop, and test processes for producing chemicals and other products. Lagrange mechanics is used in chemical engineering to analyze and optimize the dynamics of chemical processes. This course will provide you with a strong foundation in Lagrange mechanics, which may be useful for a career in chemical engineering.
Geophysicist
Geophysicists study the Earth's physical properties and processes. Lagrange mechanics is used in geophysics to analyze and optimize the dynamics of the Earth's systems. This course will provide you with a strong foundation in Lagrange mechanics, which may be useful for a career in geophysics.
Oceanographer
Oceanographers study the oceans and their interactions with the atmosphere and land. Lagrange mechanics is used in oceanography to analyze and optimize the dynamics of ocean currents and waves. This course will provide you with a strong foundation in Lagrange mechanics, which may be useful for a career in oceanography.
Materials Scientist
Materials Scientists develop and improve materials for a variety of applications, such as electronics, energy, and medicine. Lagrange mechanics is used in materials science to analyze and optimize the dynamics of materials. This course will provide you with a strong foundation in Lagrange mechanics, which may be useful for a career in materials science.
Biophysicist
Biophysicists study the physical principles underlying biological systems. Lagrange mechanics is used in biophysics to analyze and optimize the dynamics of biological systems, such as cells and molecules. This course may be useful for a career in biophysics, as it will provide you with a strong foundation in Lagrange mechanics.
Systems Engineer
Systems Engineers design, develop, and test complex systems, such as airplanes, power plants, and communication networks. Lagrange mechanics is used in systems engineering to analyze and optimize the dynamics of complex systems. This course will provide you with a strong foundation in Lagrange mechanics, which may be useful for a career in systems engineering.
Data Scientist
Data Scientists analyze and interpret data to extract meaningful insights. Lagrange mechanics is used in data science to analyze and optimize the dynamics of data-driven systems. This course may be useful for a career in data science, as it will provide you with a strong foundation in Lagrange mechanics.
Software Engineer
Software Engineers design, develop, and test software applications. Lagrange mechanics is used in software engineering to analyze and optimize the dynamics of software systems. This course may be useful for a career in software engineering, as it will provide you with a strong foundation in Lagrange mechanics.
Financial Analyst
Financial Analysts analyze and interpret financial data to make investment recommendations. Lagrange mechanics is used in financial analysis to analyze and optimize the dynamics of financial systems. This course may be useful for a career in financial analysis, as it will provide you with a strong foundation in Lagrange mechanics.

Reading list

We've selected 13 books that we think will supplement your learning. Use these to develop background knowledge, enrich your coursework, and gain a deeper understanding of the topics covered in Mécanique Lagrangienne.
Ce livre en trois volumes est une référence en mécanique. Il couvre une large gamme de sujets, y compris la mécanique lagrangienne. Il est particulièrement utile pour sa présentation claire et approfondie des concepts fondamentaux.
Ouvrage historique de référence en mécanique analytique, il présente les principes fondamentaux de la mécanique lagrangienne de manière approfondie.
Ce livre est un excellent complément à ce cours car il présente de manière claire et concise les concepts de la mécanique lagrangienne. Il aborde également des sujets plus avancés comme le principe de moindre action et les systèmes non linéaires.
Ce livre classique couvre un large éventail de sujets en mécanique, y compris la mécanique lagrangienne. Il est particulièrement utile pour sa présentation approfondie du calcul des variations et de la théorie de Hamilton.
Manuel complet de mécanique classique, il couvre la mécanique lagrangienne en détail et fournit de nombreux exemples et exercices.
Ce livre introductif offre une présentation claire et concise des concepts de base de la mécanique lagrangienne. Il convient aux étudiants débutants.
Ouvrage de référence en mécanique quantique, il fournit des bases solides pour comprendre les concepts fondamentaux de la mécanique lagrangienne.
Manuel complet de thermodynamique et de mécanique statistique, il aborde les concepts de base et les applications dans un large éventail de domaines scientifiques.
Ouvrage de référence en mathématiques pour les physiciens et les ingénieurs, il couvre les techniques mathématiques utilisées dans la mécanique lagrangienne.
Ce manuel complet aborde la mécanique classique et relativiste. Il fournit une introduction à la mécanique lagrangienne.

Share

Help others find this course page by sharing it with your friends and followers:
Our mission

OpenCourser helps millions of learners each year. People visit us to learn workspace skills, ace their exams, and nurture their curiosity.

Our extensive catalog contains over 50,000 courses and twice as many books. Browse by search, by topic, or even by career interests. We'll match you to the right resources quickly.

Find this site helpful? Tell a friend about us.

Affiliate disclosure

We're supported by our community of learners. When you purchase or subscribe to courses and programs or purchase books, we may earn a commission from our partners.

Your purchases help us maintain our catalog and keep our servers humming without ads.

Thank you for supporting OpenCourser.

© 2016 - 2024 OpenCourser