We may earn an affiliate commission when you visit our partners.
Course image
Jesus Aguilar Gonzalez

La analítica de datos ha avanzado considerablemente en los últimos años y ahora existen diversas herramientas que nos permiten realizar tareas o procesos que antes eran complicados de realizar. Gracias a su versatilidad, el lenguaje de programación Python posee una serie de librerías que permiten realizar proyectos de analítica de datos de una forma muy sencilla y una de las librerías más populares es Pandas.

Read more

La analítica de datos ha avanzado considerablemente en los últimos años y ahora existen diversas herramientas que nos permiten realizar tareas o procesos que antes eran complicados de realizar. Gracias a su versatilidad, el lenguaje de programación Python posee una serie de librerías que permiten realizar proyectos de analítica de datos de una forma muy sencilla y una de las librerías más populares es Pandas.

En este curso nos enfocaremos a:

* Conocer los conceptos, métodos y funciones de la librería Pandas.

* Analizar datos rápida y fácilmente con la librería de Pandas.

* Usar la librería de Pandas para importar, construir y manipular DataFrames.

Enroll now

What's inside

Syllabus

Primeros Pasos con Pandas
En este primer tema nos enfocaremos a entender cómo instalar y preparar todo para utilizar la librería Pandas y aprenderemos los elementos fundamentales de la librería; además, conoceremos un poco de la historia de esta librería y el porqué es tan popular.
Read more
Componentes principales en Pandas
Una parte fundamental de Pandas es la manipulación de estructuras de datos y en este apartado estaremos enfocándonos a conocer la forma en la que Pandas maneja las estructuras de datos (series, dataframes, etc.). Adicionalmente estaremos aprendiendo las principales funciones que utiliza Pandas para manipular y analizar los datos.
Operaciones en Pandas
La popularidad de Pandas radica en que muchos lo llaman el Excel con esteroides, pues ha desarrollado funciones que permiten que ciertas operaciones sean muy sencillas y fáciles de implementar para realizar análisis muy complejos. En este apartado, revisaremos las operaciones básicas y avanzadas que maneja Pandas para realizar cálculos en estructuras de datos, columnas, renglones o datos de tipo cadena.
Casos de Uso con Pandas
El Análisis Exploratorio de Datos o EDA es una forma de analizar datos que fue definido por John W. Turkey; este es una parte fundamental para la realización de proyectos de ciencia de datos. En este apartado nos centraremos en aprender a realizar un EDA usando Pandas. Adicionalmente, otra de las etapas importantes de la ciencia de datos es la visualización de datos y en este apartado conoceremos como realizar este proceso en Pandas con la ayuda de librerías que apoyan a Pandas.

Good to know

Know what's good
, what to watch for
, and possible dealbreakers
Conceptos, técnicas y funciones de Pandas, que es una biblioteca de Python de analítica de datos
Análisis de datos rápido y sencillo con la biblioteca Pandas
Importación, construcción y manipulación de DataFrames con Pandas

Save this course

Save Analíticas de Datos con Pandas to your list so you can find it easily later:
Save

Activities

Be better prepared before your course. Deepen your understanding during and after it. Supplement your coursework and achieve mastery of the topics covered in Analíticas de Datos con Pandas with these activities:
Organize Course Materials
Maximize your learning by organizing and reviewing course materials, ensuring you have a comprehensive understanding of the concepts and techniques covered.
Show steps
  • Gather all course handouts, lecture notes, assignments, and quizzes.
  • Create a system for organizing the materials, such as folders or a digital notebook.
  • Review the materials regularly to reinforce your learning and identify areas for further study.
Review Data Analysis Concepts
Refresh your knowledge of data analysis concepts to ensure you have a solid foundation for understanding Pandas and its applications.
Show steps
  • Review notes, textbooks, or online resources on data analysis.
  • Recall key concepts such as data types, data distributions, and statistical measures.
  • Complete practice problems to reinforce your understanding.
Revise Basic Programming Concepts
Reinforce your understanding of basic programming concepts to ensure a strong foundation before starting the course.
Browse courses on Programming Fundamentals
Show steps
  • Review core programming principles such as variables, data types, and operators.
  • Practice writing simple programs using Python.
  • Complete coding challenges and exercises to test your comprehension.
Five other activities
Expand to see all activities and additional details
Show all eight activities
Practice Data Exploration with Pandas
Kickstart your learning by working on a project that involves data exploration using Pandas, providing hands-on experience and immediate application of course concepts.
Show steps
  • Choose a dataset that aligns with your interests or learning objectives.
  • Load the dataset into a Pandas DataFrame and explore its structure, data types, and missing values.
  • Perform basic data cleaning and preprocessing tasks to prepare the data for analysis.
  • Conduct exploratory data analysis using Pandas functions to identify patterns, trends, and outliers.
Explore Pandas Tutorials
Enhance your understanding of Pandas by following guided tutorials to gain practical experience.
Show steps
  • Search for tutorials that cover key Pandas concepts and features.
  • Work through the tutorials step-by-step, practicing the techniques and functions.
  • Apply what you learn by completing practice exercises within the tutorials.
Solve Pandas Challenges
Challenge yourself and refine your Pandas skills by solving coding challenges and exercises.
Show steps
  • Find online platforms or resources that offer Pandas coding challenges.
  • Select challenges that align with your skill level and learning objectives.
  • Work through the challenges, debugging and refining your solutions.
Build a Pandas Project
Solidify your learning by applying Pandas to a practical project, demonstrating your proficiency and problem-solving skills.
Show steps
  • Identify a project idea that aligns with your interests and course objectives.
  • Design and plan your project, outlining the data you need, the analysis you will perform, and the expected outcomes.
  • Implement your project using Pandas, leveraging its functions and techniques to solve the problem.
  • Write a project report or create a presentation to showcase your work.
Tutor Fellow Students
Reinforce your learning by sharing your knowledge and assisting other students, deepening your understanding through effective communication.
Show steps
  • Volunteer as a tutor or join a study group to support fellow students.
  • Prepare lesson plans and materials to facilitate effective tutoring sessions.
  • Provide guidance, answer questions, and demonstrate problem-solving techniques to your tutees.

Career center

Learners who complete Analíticas de Datos con Pandas will develop knowledge and skills that may be useful to these careers:
Data Analyst
A Data Analyst uses data to solve business problems, which can include collecting, cleaning, and analyzing data. As a Data Analyst, you would be able to use the skills you learn in this course to import, build, and manipulate dataframes, as well as analyze data quickly and efficiently.
Data Scientist
Data Scientists use scientific methods and processes to extract knowledge and insights from data in various forms, both structured and unstructured, and apply knowledge and expertise to predict future trends and behaviors. This course can help you become a Data Scientist because it will teach you how to use Pandas to perform data analysis and modeling.
Business Analyst
A Business Analyst uses data to understand customer needs and pain points, as well as to improve business processes. This course can help you become a Business Analyst because it will teach you how to use Pandas to clean, analyze, and visualize data.
Statistician
A Statistician collects, analyzes, interprets, and presents data in order to help businesses make informed decisions. This course can help you become a Statistician because it will help you build a foundation in data analysis and manipulation.
Data Visualization Engineer
A Data Visualization Engineer designs and creates visual representations of data in order to communicate insights and trends to stakeholders. This course can help you become a Data Visualization Engineer because it will teach you how to use Pandas to create visualizations such as charts and graphs.
Machine Learning Engineer
Machine Learning Engineers use data to train and build machine learning models, which can be used to automate tasks, make predictions, and improve decision-making. This course can help you become a Machine Learning Engineer because it will teach you how to use Pandas to prepare data for machine learning models.
Quantitative Analyst
A Quantitative Analyst develops and uses mathematical and statistical models to analyze data and make investment decisions. This course can help you become a Quantitative Analyst because it will teach you how to use Pandas to perform data analysis and modeling.
Actuary
An Actuary uses mathematical and statistical techniques to assess risk and uncertainty, and to develop insurance and pension plans. In this role, you would use the skills learned in this course to analyze data and understand trends.
Financial Analyst
A Financial Analyst helps businesses evaluate and forecast the financial performance of investments. In this role, you would use the skills learned in this course to analyze data and understand trends.
Market Research Analyst
A Market Research Analyst conducts research to understand market trends and consumer behavior, and uses this information to develop marketing strategies. In this role, you would use the skills learned in this course to analyze data and understand trends.
Data Architect
A Data Architect designs and manages data systems to ensure that data is stored and managed efficiently and securely. In this role, you would use the skills learned in this course to design and implement data pipelines.
Data Engineer
A Data Engineer designs, builds, and maintains data pipelines to ensure that data is available for analysis and reporting. In this role, you would use the skills learned in this course to design and implement data pipelines.
Software Developer
A Software Developer designs, develops, and maintains software applications. In this role, you would use the skills learned in this course to develop and maintain data-driven applications.
Database Administrator
A Database Administrator manages and maintains databases to ensure that data is stored and managed efficiently and securely. This course may be useful for a Database Administrator who wants to learn more about data analysis and manipulation.
Information Systems Manager
An Information Systems Manager plans and manages the IT infrastructure and services for an organization, which may include managing data systems. This course may be useful for an Information Systems Manager who wants to learn more about data analysis and manipulation.

Reading list

We've selected seven books that we think will supplement your learning. Use these to develop background knowledge, enrich your coursework, and gain a deeper understanding of the topics covered in Analíticas de Datos con Pandas.
Este libro cubre tanto los fundamentos de Pandas como las técnicas avanzadas de ciencia de datos. Es un recurso valioso para aquellos que buscan una comprensión integral del análisis de datos con Pandas.
Esta segunda edición actualizada del Pandas Cookbook ofrece soluciones prácticas a problemas comunes de Pandas. Es un recurso esencial para usuarios de todos los niveles que buscan expandir sus habilidades.
Este libro proporciona una base sólida en Python y Pandas para el análisis de datos. Es esencial para principiantes que buscan comprender los fundamentos y desarrollar habilidades de programación.
Este libro se enfoca en las técnicas y patrones efectivos para utilizar Pandas. Proporciona soluciones prácticas y consejos para mejorar el código y optimizar el rendimiento.
Este libro proporciona una introducción completa a las librerías de análisis de datos de Python, incluyendo Pandas. Es un recurso valioso para principiantes que buscan comprender los conceptos básicos y las aplicaciones.
Este libro cubre el aprendizaje automático utilizando Python y la biblioteca scikit-learn. Proporciona una base para comprender los algoritmos de aprendizaje automático y su implementación con Pandas.

Share

Help others find this course page by sharing it with your friends and followers:

Similar courses

Here are nine courses similar to Analíticas de Datos con Pandas.
Programación en Python: visualización de datos
Most relevant
Python para el análisis de datos: Pandas y NumPy
Most relevant
Análisis exploratorio de datos con Python y R
Most relevant
Manejo de bases de datos con Python
Most relevant
Análisis Exploratorio de Datos con Python
Most relevant
Introducción a la analítica de negocios
Most relevant
Amazon Redshift: Introducción al Almacenamiento de Datos
Most relevant
Visualizaciones de Datos con Python utilizando Matplotlib
Most relevant
Limpieza de datos para el procesamiento de lenguaje...
Most relevant
Our mission

OpenCourser helps millions of learners each year. People visit us to learn workspace skills, ace their exams, and nurture their curiosity.

Our extensive catalog contains over 50,000 courses and twice as many books. Browse by search, by topic, or even by career interests. We'll match you to the right resources quickly.

Find this site helpful? Tell a friend about us.

Affiliate disclosure

We're supported by our community of learners. When you purchase or subscribe to courses and programs or purchase books, we may earn a commission from our partners.

Your purchases help us maintain our catalog and keep our servers humming without ads.

Thank you for supporting OpenCourser.

© 2016 - 2024 OpenCourser