We may earn an affiliate commission when you visit our partners.
Course image
Attila Aşkar

Ders çok değişkenli fonksiyonlardaki ikili dizinin birincisidir. Burada çok değişkenli fonksiyonlardaki temel türev ve entegral kavramlarını geliştirmek ve bu konulardaki problemleri çözmekteki temel yöntemleri sunmaktadır. Ders gerçek yaşamdan gelen uygulamaları da tanıtmaya önem veren “içerikli yaklaşımla” tasarlanmıştır.

Read more

Ders çok değişkenli fonksiyonlardaki ikili dizinin birincisidir. Burada çok değişkenli fonksiyonlardaki temel türev ve entegral kavramlarını geliştirmek ve bu konulardaki problemleri çözmekteki temel yöntemleri sunmaktadır. Ders gerçek yaşamdan gelen uygulamaları da tanıtmaya önem veren “içerikli yaklaşımla” tasarlanmıştır.

Bölümler

Bölüm 1: Genel Konular ve Düzlemdeki Vektörler

Bölüm 2: Uzayda Vektörler, Doğrular ve Düzlemler; Vektör Fonksiyonları

Bölüm 3: Düzlem Eğrilerinden Hatırlatmalar ve Uzay Eğrileri, İki Değişkenli ve İkinci Derece Fonksiyonlar ve Karşıt Gelen Yüzeyler

Bölüm 4: Özel Yapıdaki İki Değişkenli Olarak Karmaşık Fonksiyonlar, İki Değişkenli Fonksiyonlarda Kısmi Türev ve İki Katlı Entegralin Temel Tanımları; Limit Kavramının Gerekliliği ve Anlatımı

Bölüm 5: Türev Hesaplama Yöntemleri

Bölüm 6: Türev Uygulamaları

Bölüm 7: İki Katlı Entegraller ve Uygulamaları

-----------

The course is the first of the sequence of calculus of multivariable functions. It develops the fundamental concepts of derivatives and integrals of functions of several variables, and the basic tools for doing the relevant calculations. The course is designed with a “content-based” approach, i. e. by solving examples, as many as possible from real life situations.

Chapters

Chapters 1: General Topics and Vectors in the Plane

Chapters 2: Vectors in Space, Lines and Planes; Vector Functions

Chapters 3: Reminders of Plane Curves and Space Curves, Quadratic Functions and Variables, Surfaces

Chapters 4: Special Two Variables Complex Functions, the Basic Definition of Partial Derivatives and Two Storey Integrals in Two Unknown Functions ; Necessity and Details of Limits

Chapters 5: Methods of Derivative Calculations

Chapters 6: Application of Derivatives

Chapters 7: Two Storey Integrals and Applications

-----------

Kaynak: Attila Aşkar, “Çok değişkenli fonksiyonlarda türev ve entegral”. Bu kitap dört ciltlik dizinin ikinci cildidir. Dizinin diğer kitapları Cilt 1 “Tek değişkenli fonksiyonlarda türev ve entegral”, Cilt 3: “Doğrusal cebir” ve Cilt 4: “Diferansiyel denklemler” dir.

Source: Attila Aşkar, Calculus of Multivariable Functions, Volume 2 of the set of Vol1: Calculus of Single Variable Functions, Volume 3: Linear Algebra and Volume 4: Differential Equations. All available online starting on January 6, 2014

Enroll now

Two deals to help you save

We found two deals and offers that may be relevant to this course.
Save money when you learn. All coupon codes, vouchers, and discounts are applied automatically unless otherwise noted.

What's inside

Syllabus

Genel Konular ve Düzlemdeki Vektörler
Fonksiyon kavramı: girdi – çıktı, bir değerin diğerine gönderimi, çizit, ve dönüşüm gösterimleri. Çok değişkenli fonksiyonların sınıflandırılması: uzayda eğriler, yüzeyler ve vektör alanları. Düzlemde karteziyen ve dairesel koordinatların, uzayda karteziyen, silindir ve küresel koordinatların tanıtılması. Fonksiyonların açık, kapalı ve parametrelerle gösterilmesi. Vektörler: düzlemde geometriden cebire. Düzlemde toplama, bir sayıyla çarpma, iç çarpım ve vektör çarpımı. Bu işlemlerin üç boyuta genellenmesi ve üçlü vektör çarpımları. Bu kavramların geometrideki anlamları ve uygulamaları. Uzayda doğrular ve düzlemler.
Read more
Uzayda Vektörler, Doğrular ve Düzlemler; Vektör Fonksiyonları
Uzayda eğriler: tek bağımsız ve üç bağımlı değişkenle vektör fonksiyonları. Düzlemdeki temel eğrilerin hatırlatılması ve uzaydaki bazı önemli eğrilerin tanıtılması. Düzlemde yay uzunluğu, eğrilik ile teğet ve dik vektörlerin hatırlatılması. Uzayda yay uzunluğu, teğet, dik ve ikinci dik (binormal) vektörleriyle eğrilik ve burulmanın tanımlanması. Uzaydaki yörüngelerde hız ve ivme.
Düzlem Eğrilerinden Hatırlatmalar ve Uzay Eğrileri, İki Değişkenli ve İkinci Derece Fonksiyonlar ve Karşıt Gelen Yüzeyler
Uzayda yüzeyler: iki bağımsız ve tek bağımlı değişkenle tanımlanan sayısal fonksiyonlar. Yüzeylerin anlaşılması ve temel yüzeylerde çizimler: perspektif görünüm, eşit değer eğrileri ve kesitlerin çizimi. İki değişkenli ikinci derece kuvvet fonksiyonlarıyla verilen temel yüzeyler. Silindir yüzeyleri ve dönel yüzeyler. İki değişkenli özel bir yapı olarak karmaşık değerli fonksiyonlar. Mathematica, Mathlab, Ghostview… gibi yazılımlarla bilgisayarda çizimlerden örnekler.
Özel Yapıdaki İki Değişkenli Olarak Karmaşık Fonksiyonlar, İki Değişkenli Fonksiyonlarda Kısmi Türev ve İki Katlı Entegralin Temel Tanımları; Limit Kavramının Gerekliliği ve Anlatımı
Tek değişkenli fonksiyonlarda türev ve entegralin hatırlatılması. Buradaki ana kavramların İki değişkenli fonksiyonlarda “kısmi türev” ve “iki katlı entegral” olarak genellenmesi. Kısmi türev ve iki katlı entegralin geometrideki anlamları. Temel tanımları pekiştiren az sayıda kısmi türev ve iki katlı entegrallerin hesabı.
Türev Hesaplama Yöntemleri
İki değişkenli sayısal açık fonksiyonlarla tanımlanan yüzeyde teğet düzlem ve diferansiyel. Zincirleme türev yöntemi ve tam türev. Yöne göre türev. Gradyan. Koordinat dönüşümü ve Jakobiyan. Taylor serileri. Kritik noktalar, en büyük ve en küçük değerler. Türev hesaplamalarının üç ve “n” değişkenli fonksiyonlara genellenmesi.
Türev Uygulamaları
İki Katlı Entegraller ve Uygulamaları
İki katlı entegrallerde hesaplama örnekleri. Kartezyen ve dairesel koordinatlarda hesaplamalar, uygulamalardan örnekler.
Dönem Sonu Sınavı (Final Exam)

Good to know

Know what's good
, what to watch for
, and possible dealbreakers
Covers foundational concepts in multivariate calculus, including derivatives and integrals
Provides a strong foundation for advanced topics in mathematics and its applications in various fields
Taught by an experienced instructor with a strong reputation in the field
Utilizes a hands-on approach with real-world examples to enhance understanding
Emphasizes practical applications, making it relevant for individuals pursuing careers in fields that utilize mathematics
Requires a solid understanding of pre-calculus concepts, including algebra, trigonometry, and analytic geometry

Save this course

Save Çok değişkenli Fonksiyon I: Kavramlar / Multivariable Calculus I: Concepts to your list so you can find it easily later:
Save

Reviews summary

Multivariable calculus: partial derivatives and integrals

Multivariable Calculus I: Concepts is a college-level course that focuses on the fundamental principles of calculus for functions with multiple variables, such as derivatives and integrals. The course takes a hands-on approach with many real-life examples to help students understand the concepts. Students who took this course found it to be difficult, but ultimately rewarding, with one reviewer stating that it was “useful for me.” It is recommended for students who have a strong foundation in single-variable calculus. Overall, this course is well-received by students.
Students appreciate the professor.
"Aynı hocadan diff dersini de bekliyoruz."
"Teşekkürler Koç"
Course provides several examples from real-life situations.
"The course is designed with a “content-based” approach, i. e. by solving examples, as many as possible from real life situations."
Requires a strong foundation in single-variable calculus.
Students found the course to be challenging.
"it was hard for me."

Activities

Be better prepared before your course. Deepen your understanding during and after it. Supplement your coursework and achieve mastery of the topics covered in Çok değişkenli Fonksiyon I: Kavramlar / Multivariable Calculus I: Concepts with these activities:
Çalışma Grubu
Çalışma Grubu'na katılmak, kurs konularının daha iyi anlaşılmasını sağlayacaktır.
Show steps
  • Sınıf arkadaşlarınızla bir çalışma grubu oluşturun.
  • Grupla düzenli olarak buluşun.
  • Kurs konularını birlikte tartışın.
Show all one activities

Career center

Learners who complete Çok değişkenli Fonksiyon I: Kavramlar / Multivariable Calculus I: Concepts will develop knowledge and skills that may be useful to these careers:
Geophysicist
Geophysicists study the physical properties of the Earth and its surrounding environment. They use a variety of mathematical and computational techniques to analyze data and develop models of the Earth's structure and dynamics. The concepts of derivatives and integrals, which are covered in this course, are essential for understanding the mathematical models used in Geophysics. This course can help you to develop the skills you need to pursue a career as a Geophysicist.
Aerospace Engineer
Aerospace Engineers design, develop, and test aircraft, spacecraft, and other aerospace vehicles. They use a variety of mathematical and computational techniques to analyze the performance of these vehicles and to ensure that they are safe and efficient. The concepts of derivatives and integrals, which are covered in this course, are essential for understanding the mathematical models used in Aerospace Engineering. This course can help you to develop the skills you need to pursue a career as an Aerospace Engineer.
Materials Scientist
Materials Scientists study the properties of materials and develop new materials with improved properties. They use a variety of mathematical and computational techniques to analyze the structure and properties of materials. The concepts of derivatives and integrals, which are covered in this course, are essential for understanding the mathematical models used in Materials Science. This course can help you to develop the skills you need to pursue a career as a Materials Scientist.
Mechanical Engineer
Mechanical Engineers design, develop, and test mechanical systems. They use a variety of mathematical and computational techniques to analyze the performance of these systems and to ensure that they are safe and efficient. The concepts of derivatives and integrals, which are covered in this course, are essential for understanding the mathematical models used in Mechanical Engineering. This course can help you to develop the skills you need to pursue a career as a Mechanical Engineer.
Biomedical Engineer
Biomedical Engineers apply engineering principles to the design and development of medical devices and systems. They use a variety of mathematical and computational techniques to analyze the performance of these devices and systems and to ensure that they are safe and effective. The concepts of derivatives and integrals, which are covered in this course, are essential for understanding the mathematical models used in Biomedical Engineering. This course can help you develop the skills you need to pursue a career as a Biomedical Engineer.
Chemical Engineer
Chemical Engineers design, develop, and operate chemical processes. They use a variety of mathematical and computational techniques to analyze the performance of these processes and to ensure that they are safe and efficient. The concepts of derivatives and integrals, which are covered in this course, are essential for understanding the mathematical models used in Chemical Engineering. This course can help you to develop the skills you need to pursue a career as a Chemical Engineer.
Civil Engineer
Civil Engineers design, build, and maintain infrastructure projects such as roads, bridges, and buildings. They use a variety of mathematical and computational techniques to analyze the performance of these projects and to ensure that they are safe and efficient. The concepts of derivatives and integrals, which are covered in this course, are essential for understanding the mathematical models used in Civil Engineering. This course can help you develop the skills you need to pursue a career as a Civil Engineer.
Electrical Engineer
Electrical Engineers design, develop, and test electrical systems. They use a variety of mathematical and computational techniques to analyze the performance of these systems and to ensure that they are safe and efficient. The concepts of derivatives and integrals, which are covered in this course, are essential for understanding the mathematical models used in Electrical Engineering. This course can help you develop the skills you need to pursue a career as an Electrical Engineer.
Computer Scientist
Computer Scientists design, develop, and test computer systems. They use a variety of mathematical and computational techniques to analyze the performance of these systems and to ensure that they are safe and efficient. The concepts of derivatives and integrals, which are covered in this course, are essential for understanding the mathematical models used in Computer Science. This course can help you develop the skills you need to pursue a career as a Computer Scientist.
Data Scientist
Data Scientists use mathematical and computational techniques to analyze data and develop models. They use these models to solve problems in a variety of fields, including business, finance, healthcare, and manufacturing. The concepts of derivatives and integrals, which are covered in this course, are essential for understanding the mathematical models used in Data Science. This course can help you develop the skills you need to pursue a career as a Data Scientist.
Statistician
Statisticians collect, analyze, and interpret data. They use this data to draw conclusions about populations and to make predictions about future events. The concepts of derivatives and integrals, which are covered in this course, are essential for understanding the mathematical models used in Statistics. This course can help you to develop the skills you need to pursue a career as a Statistician.
Economist
Economists study the production, distribution, and consumption of goods and services. They use a variety of mathematical and computational techniques to analyze economic data and to develop economic models. The concepts of derivatives and integrals, which are covered in this course, are essential for understanding the mathematical models used in Economics. This course can help you to develop the skills you need to pursue a career as an Economist.
Financial Analyst
Financial Analysts evaluate the financial performance of companies and make recommendations about investments. They use a variety of mathematical and computational techniques to analyze financial data and to develop financial models. The concepts of derivatives and integrals, which are covered in this course, are essential for understanding the mathematical models used in Financial Analysis. This course can help you develop the skills you need to pursue a career as a Financial Analyst.
Mathematician
Mathematicians study the properties of numbers, shapes, and other mathematical objects. They also develop new mathematical theories and techniques. The concepts of derivatives and integrals, which are covered in this course, are fundamental to Mathematics. This course can help you develop the skills you need to pursue a career as a Mathematician.
Actuary
Actuaries use mathematical and statistical techniques to assess risk and uncertainty. They use this information to develop insurance policies and other financial products. The concepts of derivatives and integrals, which are covered in this course, are essential for understanding the mathematical models used in Actuarial Science. This course can help you develop the skills you need to pursue a career as an Actuary.

Reading list

We've selected 26 books that we think will supplement your learning. Use these to develop background knowledge, enrich your coursework, and gain a deeper understanding of the topics covered in Çok değişkenli Fonksiyon I: Kavramlar / Multivariable Calculus I: Concepts.
Çok değişkenli fonksiyonlar hakkında kapsamlı bir metin olan bu kitap, bu dersin içeriğini destekleyici ve genişletici niteliktedir.
Provides a comprehensive overview of multivariable calculus, including partial derivatives, multiple integrals, and vector analysis. It popular textbook for students taking this course, providing a clear and accessible introduction to the subject matter.
Provides a comprehensive overview of the fundamental concepts of calculus of several variables, including partial derivatives, multiple integrals, and vector analysis. It valuable reference for students taking this course, providing a deeper understanding of the subject matter.
Bu kitap, vektörler ve vektör analizi konularına odaklanmakta olup, bu dersin vektör fonksiyonları ve diferansiyel formlar konularını desteklemektedir.
Provides a detailed treatment of vector calculus, including line integrals, surface integrals, and the divergence theorem. It useful reference for students taking this course, providing additional depth and rigor to the subject matter.
Provides a comprehensive overview of calculus, including single-variable and multivariable calculus. It popular textbook for students taking this course, providing a clear and accessible introduction to the subject matter.
Bu kitap, doğrusal cebir konularını uygulamalı bir yaklaşımla ele almakta olup, bu dersin doğrusal dönüşümler ve koordinat dönüşümü konularını desteklemektedir.
Provides an introduction to linear algebra, with a focus on applications in engineering and science. It useful reference for students taking this course, providing additional background knowledge in linear algebra.
Provides an introduction to mathematical methods used in physics and engineering, including vector calculus, partial differential equations, and complex analysis. It useful reference for students taking this course, providing additional background knowledge in mathematical methods.
Provides an introduction to linear algebra, with a focus on applications in engineering and science. It useful reference for students taking this course, providing additional background knowledge in linear algebra.
Bu kitap, topoloji konularına giriş niteliğinde olup, bu dersin limit kavramı ve süreklilik konularını desteklemektedir.
Provides an introduction to probability and statistics, with a focus on applications in engineering and science. It useful reference for students taking this course, providing additional background knowledge in probability and statistics.
Provides an introduction to mathematical modeling, with a focus on applications in engineering and science. It useful reference for students taking this course, providing additional background knowledge in mathematical modeling.
Provides an introduction to optimization, with a focus on applications in engineering and science. It useful reference for students taking this course, providing additional background knowledge in optimization.
Bu kitap, fizik ve mühendislik için matematiksel yöntemleri ele almakta olup, bu dersin türev ve integral uygulamaları konularını desteklemektedir.
Bu kitap, sayısal analiz konularına odaklanmakta olup, bu dersin iki katlı integraller ve uygulamaları konularını desteklemektedir.
Bu kitap, bilgisayar grafikleri konularına odaklanmakta olup, bu dersin iki katlı integraller ve uygulamaları konularını desteklemektedir.
Bu kitap, mantık, matematik ve müziğin iç içe geçtiği düşüncelerle ilgili düşünceleri ele almaktadır ve bu dersin matematiğin yaratıcı ve ilham verici yönleriyle ilgili yönlerini desteklemektedir.
Bu kitap, uzayın şeklini ve topolojisini ele almaktadır ve bu dersin uzaydaki eğriler ve yüzeyler konularını desteklemektedir.
Bu kitap, matematik tarihinin önemli isimlerine ve fikirlerine odaklanmaktadır ve bu dersin matematiğin tarihi ve kültürel önemiyle ilgili yönlerini desteklemektedir.

Share

Help others find this course page by sharing it with your friends and followers:

Similar courses

Here are nine courses similar to Çok değişkenli Fonksiyon I: Kavramlar / Multivariable Calculus I: Concepts.
Çok değişkenli Fonksiyon II: Uygulamalar / Multivariable...
Most relevant
Doğrusal Cebir I: Uzaylar ve İşlemciler / Linear Algebra...
Most relevant
Doğrusal Cebir II: Kare Matrisler, Hesaplama Yöntemleri...
Most relevant
Calculus Applied!
Most relevant
101: Single-Variable Calculus
Most relevant
Calculus: Single Variable Part 3 - Integration
Most relevant
Calculus through Data & Modelling: Vector Calculus
Most relevant
Calculus through Data & Modelling: Techniques of...
Vector Calculus for Engineers
Our mission

OpenCourser helps millions of learners each year. People visit us to learn workspace skills, ace their exams, and nurture their curiosity.

Our extensive catalog contains over 50,000 courses and twice as many books. Browse by search, by topic, or even by career interests. We'll match you to the right resources quickly.

Find this site helpful? Tell a friend about us.

Affiliate disclosure

We're supported by our community of learners. When you purchase or subscribe to courses and programs or purchase books, we may earn a commission from our partners.

Your purchases help us maintain our catalog and keep our servers humming without ads.

Thank you for supporting OpenCourser.

© 2016 - 2024 OpenCourser