This course allows you to apply the SQL skills taught in “SQL for Data Science” to four increasingly complex and authentic data science inquiry case studies. We'll learn how to convert timestamps of all types to common formats and perform date/time calculations. We'll select and perform the optimal JOIN for a data science inquiry and clean data within an analysis dataset by deduping, running quality checks, backfilling, and handling nulls. We'll learn how to segment and analyze data per segment using windowing functions and use case statements to execute conditional logic to address a data science inquiry. We'll also describe how to convert a query into a scheduled job and how to insert data into a date partition. Finally, given a predictive analysis need, we'll engineer a feature from raw data using the tools and skills we've built over the course. The real-world application of these skills will give you the framework for performing the analysis of an AB test.
OpenCourser helps millions of learners each year. People visit us to learn workspace skills, ace their exams, and nurture their curiosity.
Our extensive catalog contains over 50,000 courses and twice as many books. Browse by search, by topic, or even by career interests. We'll match you to the right resources quickly.
Find this site helpful? Tell a friend about us.
We're supported by our community of learners. When you purchase or subscribe to courses and programs or purchase books, we may earn a commission from our partners.
Your purchases help us maintain our catalog and keep our servers humming without ads.
Thank you for supporting OpenCourser.