This course focuses on data exploration, feature creation, and feature selection for time sequences. The topics discussed include binning, smoothing, transformations, and data set operations for time series, spectral analysis, singular spectrum analysis, distance measures, and motif analysis.
This course focuses on data exploration, feature creation, and feature selection for time sequences. The topics discussed include binning, smoothing, transformations, and data set operations for time series, spectral analysis, singular spectrum analysis, distance measures, and motif analysis.
In this course you learn to perform motif analysis and implement analyses in the spectral or frequency domain. You also discover how distance measures work, implement applications, explore signal components, and create time series features.
This course is appropriate for analysts with a quantitative background as well as domain experts who would like to augment their time-series tool box. Before taking this course, you should be comfortable with basic statistical concepts. You can gain this experience by completing the Statistics with SAS course. Familiarity with matrices and principal component analysis are also helpful but not required.
OpenCourser helps millions of learners each year. People visit us to learn workspace skills, ace their exams, and nurture their curiosity.
Our extensive catalog contains over 50,000 courses and twice as many books. Browse by search, by topic, or even by career interests. We'll match you to the right resources quickly.
Find this site helpful? Tell a friend about us.
We're supported by our community of learners. When you purchase or subscribe to courses and programs or purchase books, we may earn a commission from our partners.
Your purchases help us maintain our catalog and keep our servers humming without ads.
Thank you for supporting OpenCourser.