We may earn an affiliate commission when you visit our partners.
Course image
Google Career Certificates

Este es el octavo curso del Certificado de análisis computacional de datos de Google. Tendrás la oportunidad de realizar un caso práctico opcional que te ayudará a prepararte para la búsqueda de empleos de análisis computacional de datos. Los empleadores suelen usar casos prácticos para evaluar las destrezas analíticas. En tu caso práctico, elegirás un escenario creado en función del análisis de datos. Luego, harás preguntas sobre los datos de este escenario y los prepararás, procesarás, analizarás y visualizarás, además de actuar en función de ellos. También aprenderás otras habilidades útiles para la búsqueda de empleos mediante videos sobre preguntas y respuestas frecuentes en las entrevistas, materiales de ayuda para crear un portfolio en línea y mucho más. Los analistas de datos actuales de Google seguirán dándote instrucciones y te proporcionarán formas prácticas de llevar a cabo las tareas comunes de los analistas de datos con las mejores herramientas y recursos.

Read more

Este es el octavo curso del Certificado de análisis computacional de datos de Google. Tendrás la oportunidad de realizar un caso práctico opcional que te ayudará a prepararte para la búsqueda de empleos de análisis computacional de datos. Los empleadores suelen usar casos prácticos para evaluar las destrezas analíticas. En tu caso práctico, elegirás un escenario creado en función del análisis de datos. Luego, harás preguntas sobre los datos de este escenario y los prepararás, procesarás, analizarás y visualizarás, además de actuar en función de ellos. También aprenderás otras habilidades útiles para la búsqueda de empleos mediante videos sobre preguntas y respuestas frecuentes en las entrevistas, materiales de ayuda para crear un portfolio en línea y mucho más. Los analistas de datos actuales de Google seguirán dándote instrucciones y te proporcionarán formas prácticas de llevar a cabo las tareas comunes de los analistas de datos con las mejores herramientas y recursos.

Los alumnos que completen este programa de certificados estarán listos para solicitar trabajos de nivel introductorio como analistas de datos. No se requiere experiencia previa.

Al final de este curso, serás capaz de:

- Aprender los beneficios y los posibles usos de los casos prácticos y los portfolios en la búsqueda de empleo.

- Explorar escenarios de entrevistas en el mundo real y preguntas frecuentes de estas entrevistas.

- Descubrir de qué manera los casos prácticos pueden formar parte del proceso de entrevista laboral.

- Analizar y considerar diversos escenarios de casos prácticos.

- Tener la oportunidad de realizar tu propio caso práctico para agregarlo a tu portfolio.

Enroll now

What's inside

Syllabus

Aprender sobre los conceptos básicos del proyecto final
Un proyecto final es un gran logro. En esta parte del curso, verás proyectos finales, casos prácticos y portafolios, y de qué manera ayudan a que los empleadores comprendan mejor tus destrezas y capacidades. También podrás explorar portafolios reales, en línea, de analistas de datos.
Read more
Opcional: Crear tu portafolio
En esta parte del curso, obtendrás una visión general de dos pistas posibles para completar tu caso práctico. Puedes usar un conjunto de datos de alguno de los casos de negocios proporcionados o buscar un conjunto de datos públicos y desarrollar un caso de negocios para un área que sea de tu interés personal. Además, conocerás varias plataformas para alojar tu caso práctico una vez terminado.
Opcional: Usar tu portafolio
Tu portafolio está pensado para que lo vean y lo exploren. En esta parte del curso, aprenderás a debatir sobre tu portafolio y a resaltar destrezas específicas en situaciones de entrevista. También crearás y practicarás una presentación concisa para tu caso práctico. Por último, descubrirás cómo posicionarte como el mejor candidato para puestos de analista de datos y obtendrás consejos prácticos para las entrevistas.
Aprovecha tu certificado
Obtener tu Certificado de análisis computacional de datos de Google es una insignia de honor. También una insignia real. En esta parte del curso, aprenderás cómo reclamar la insignia de tu certificado y mostrarla en tu perfil de LinkedIn. También conocerás los beneficios de las búsquedas de empleo que puedes aprovechar como portador del certificado, incluso el acceso a la plataforma Big Interview y a las entrevistas de Byteboard.

Good to know

Know what's good
, what to watch for
, and possible dealbreakers
Suitable for those who want to become analysts with no previous experience
Provides guidance from actual Google analysts
Includes simulated interview questions and answers
Teaches how to use industry tools and resources
Focuses on a practical capstone project
May be challenging for those with no data analysis skills

Save this course

Save Curso final de análisis computacional de datos de Google: completa un caso práctico to your list so you can find it easily later:
Save

Activities

Be better prepared before your course. Deepen your understanding during and after it. Supplement your coursework and achieve mastery of the topics covered in Curso final de análisis computacional de datos de Google: completa un caso práctico with these activities:
Explorar tutoriales sobre herramientas de análisis de datos específicas
Mejora tus habilidades prácticas siguiendo tutoriales sobre herramientas específicas de análisis de datos, como SQL, Python y herramientas de visualización, para desarrollar fluidez.
Browse courses on SQL
Show steps
  • Identificar herramientas de análisis de datos específicas que deseas aprender.
  • Buscar tutoriales en línea o plataformas de aprendizaje sobre esas herramientas.
  • Seguir los tutoriales paso a paso y completar los ejercicios prácticos.
Crear un proyecto de análisis de datos personalizado
Demuestra tus habilidades de análisis de datos aplicándolas a un proyecto real. Esto te permitirá aplicar lo aprendido en el curso y fortalecer tu portafolio.
Show steps
  • Definir un problema o pregunta de investigación que te interese.
  • Recopilar y preparar un conjunto de datos relevante.
  • Analizar y visualizar los datos utilizando técnicas aprendidas en el curso.
  • Interpretar los resultados y extraer información valiosa.
Show all two activities

Career center

Learners who complete Curso final de análisis computacional de datos de Google: completa un caso práctico will develop knowledge and skills that may be useful to these careers:
Data Scientist
Data Science is an interdisciplinary field that uses scientific methods, processes, algorithms, and systems to extract knowledge and insights from data. As a Data Scientist, you will build and apply mathematical and statistical models to extract insights from data, solve problems, and make predictions. This course is highly relevant to the field of Data Science as it provides a comprehensive overview of the data analysis process, machine learning techniques, predictive modeling and helps you develop the skills needed to effectively communicate your findings to stakeholders.
Data Visualization Specialist
A Data Visualization Specialist is responsible for creating visual representations of data that effectively communicate insights and trends. This course can be helpful for Data Visualization Specialists, as it provides them with a strong foundation in data analysis and visualization techniques and helps them to develop the skills needed to create engaging and informative data visualizations.
Data Analyst
A Data Analyst gathers, cleans, and analyzes data to help businesses make better decisions, increase efficiency, and achieve their goals. This course in particular can be helpful for aspiring Data Analysts as it provides them with a comprehensive overview of the data analysis process and equips them with hands-on experience working with real-world datasets.
Operations Research Analyst
An Operations Research Analyst applies mathematical and analytical techniques to improve the efficiency and effectiveness of business processes. This course can be helpful for Operations Research Analysts, as it provides them with a strong foundation in data analysis and optimization techniques and helps them to develop the skills needed to model and solve complex business problems.
Machine Learning Engineer
A Machine Learning Engineer is responsible for developing and implementing machine learning and deep learning models to solve complex business problems. This course can be helpful for Machine Learning Engineers as it provides them with a strong foundation in data analysis techniques and machine learning algorithms, and allows them to practice applying these algorithms to real-world datasets.
Business Analyst
A Business Analyst is responsible for understanding the needs of a business and translating them into technical specifications. This course can be helpful for Business Analysts as it provides them with a strong foundation in data analysis techniques and helps them to develop the skills needed to effectively communicate with both technical and non-technical stakeholders.
Quantitative Analyst
A Quantitative Analyst is responsible for developing and applying mathematical and statistical models to financial data to make investment decisions. This course can be helpful for Quantitative Analysts, as it provides them with a strong foundation in data analysis and modeling techniques and helps them to develop the skills needed to effectively analyze and model financial data.
Risk Analyst
A Risk Analyst is responsible for identifying, assessing, and mitigating risks to an organization. This course can be helpful for Risk Analysts, as it provides them with a strong foundation in data analysis and modeling techniques and helps them develop the skills needed to effectively analyze and manage risk.
Market Researcher
A Market Researcher conducts research on consumer behavior, market trends, and the effectiveness of marketing campaigns. This course can be helpful for Market Researchers, as it provides them with a strong foundation in data analysis techniques and helps them to develop the skills needed to effectively gather, analyze, and interpret data.
Data Engineer
A Data Engineer is responsible for designing, building, and maintaining data pipelines and infrastructure. This course can be helpful for Data Engineers, as it provides them with a strong foundation in data analysis and engineering techniques and helps them to develop the skills needed to effectively manage and process large datasets.
Statistician
A Statistician collects, analyzes, interprets, and presents data. This course can be helpful for Statisticians, as it provides a strong foundation in statistical techniques and helps them to develop the skills needed to communicate their findings effectively.
Healthcare Analyst
A Healthcare Analyst is responsible for analyzing healthcare data to improve the quality, efficiency, and cost-effectiveness of healthcare services. This course can be helpful for Healthcare Analysts, as it provides them with a strong foundation in data analysis techniques and helps them to develop the skills needed to effectively analyze and interpret healthcare data.
Software Engineer
A Software Engineer designs, develops, tests, and maintains software systems. While a background in data analysis is not always required for Software Engineers, this course can be helpful for those interested in pursuing a career in data-driven software development, data engineering, or data architecture.
Actuary
An Actuary is responsible for assessing and managing financial risk. This course can be helpful for Actuaries, as it provides them with a strong foundation in data analysis and modeling techniques and helps them to develop the skills needed to effectively analyze and manage risk.
Financial Analyst
A Financial Analyst is responsible for analyzing financial data and making investment recommendations. This course can be helpful for Financial Analysts, as it provides them with a strong foundation in data analysis and modeling techniques and helps them develop the skills needed to effectively analyze complex financial information.

Reading list

We've selected nine books that we think will supplement your learning. Use these to develop background knowledge, enrich your coursework, and gain a deeper understanding of the topics covered in Curso final de análisis computacional de datos de Google: completa un caso práctico.
Provides a comprehensive and rigorous overview of deep learning algorithms and techniques. It covers neural networks, convolutional neural networks, recurrent neural networks, and generative adversarial networks.
Provides a comprehensive and rigorous overview of reinforcement learning algorithms and techniques. It covers Markov decision processes, dynamic programming, and deep reinforcement learning.
Provides a comprehensive overview of statistical learning techniques. It covers supervised learning, unsupervised learning, and statistical modeling.
Provides a comprehensive overview of machine learning algorithms and techniques. It covers supervised learning, unsupervised learning, and deep learning.
Provides a comprehensive overview of data mining techniques. It covers data preprocessing, feature selection, classification, clustering, and association rule mining.
Provides a practical introduction to deep learning using the Keras library in Python. It covers neural networks, convolutional neural networks, recurrent neural networks, and generative adversarial networks.
Provides a comprehensive overview of natural language processing techniques using Python. It covers text preprocessing, tokenization, part-of-speech tagging, and named entity recognition.
Provides a business-oriented introduction to data science. It covers data collection, analysis, and visualization, and how to use these techniques to make better business decisions.

Share

Help others find this course page by sharing it with your friends and followers:

Similar courses

Here are nine courses similar to Curso final de análisis computacional de datos de Google: completa un caso práctico.
Excel: Creación de un panel gráfico de control empresarial
Most relevant
Estadísticas para la Ciencia de Datos con Python
Most relevant
Formula preguntas para tomar decisiones basadas en datos
Most relevant
Aspectos básicos: Datos, datos, en todas partes
Most relevant
Compartir datos a través del arte de la visualización
Most relevant
Proceso de datos sucios a datos limpios
Most relevant
Machine Learning in the Enterprise - Español
Most relevant
Transferencia de la investigación para la ciencia abierta
Most relevant
Python para Ciencia de Datos
Most relevant
Our mission

OpenCourser helps millions of learners each year. People visit us to learn workspace skills, ace their exams, and nurture their curiosity.

Our extensive catalog contains over 50,000 courses and twice as many books. Browse by search, by topic, or even by career interests. We'll match you to the right resources quickly.

Find this site helpful? Tell a friend about us.

Affiliate disclosure

We're supported by our community of learners. When you purchase or subscribe to courses and programs or purchase books, we may earn a commission from our partners.

Your purchases help us maintain our catalog and keep our servers humming without ads.

Thank you for supporting OpenCourser.

© 2016 - 2024 OpenCourser