This guided project aims to empower data professionals to build tidy machine-learning models in R.
This guided project aims to empower data professionals to build tidy machine-learning models in R.
In this 2-hour project-based course, you will be working in the context of a real-world scenario as part of a data-science team tasked with reducing hospital readmissions for a leading healthcare organization. Through hands-on practice, you’ll learn to preprocess clinical data and train and evaluate machine learning models. By the end of this learning experience, you'll have created a comprehensive machine-learning pipeline tailored to predict hospital readmissions.
To succeed, you'll need a good understanding of R programming language, including data manipulation and visualization using tidyverse packages and some knowledge of machine learning concepts.
No prior experience with Tidymodels is required, making it accessible to anyone interested in leveraging data science for healthcare analytics. Join us on this transformative journey and become equipped to make a meaningful impact on patient care outcomes through data-driven insights.
OpenCourser helps millions of learners each year. People visit us to learn workspace skills, ace their exams, and nurture their curiosity.
Our extensive catalog contains over 50,000 courses and twice as many books. Browse by search, by topic, or even by career interests. We'll match you to the right resources quickly.
Find this site helpful? Tell a friend about us.
We're supported by our community of learners. When you purchase or subscribe to courses and programs or purchase books, we may earn a commission from our partners.
Your purchases help us maintain our catalog and keep our servers humming without ads.
Thank you for supporting OpenCourser.