We may earn an affiliate commission when you visit our partners.
Course image

This course contains 7 segments:

Newton's laws of motion

Read more

This course contains 7 segments:

Newton's laws of motion

This tutorial will expose you to the foundation of classical mechanics--Newton's laws. On one level they are intuitive, on another lever they are completely counter-intuitive. Challenge your take on reality and watch this tutorial. The world will look very different after you're done.

Normal force and contact force

A dog is balancing on one arm on my head. Is my head applying a force to the dog's hand? If it weren't, wouldn't there be nothing to offset the pull of gravity causing the acrobatic dog to fall? What would we call this force? Can we have a general term for the component of a contact force that acts perpendicular to the plane of contact? These are absolutely normal questions to ask.

Balanced and unbalanced forces

You will often hear physics professors be careful to say "net force" or "unbalanced force" rather than just "force". Why? This tutorial explains why and might give you more intuition about Newton's laws in the process.

Slow sock on Lubricon VI

This short tutorial will have you dealing with orbiting frozen socks in order to understand whether you understand Newton's Laws. We also quiz you a bit during the videos just to make sure that you aren't daydreaming about what you would do with a frozen sock.

Inclined planes and friction

We've all slid down slides/snow-or-mud-covered-hills/railings at some point in our life (if not, you haven't really lived) and noticed that the smoother the surface the more we would accelerate (try to slide down a non-snow-or-mud-covered hill). This tutorial looks into this in some depth. We'll look at masses on inclined planes and think about static and kinetic friction.

Tension

Bad commute? Baby crying? Bills to pay? Looking to take a bath with some Calgon (do a search on YouTube for context) to ease your tension? This tutorial has nothing (actually little, not nothing) to do with that. So far, most of the forces we've been dealing with are forces of "pushing"--contact forces at the macro level because of atoms not wanting to get to close at the micro level. Now we'll deal with "pulling" force or tension (at a micro level this is the force of attraction between bonded atoms).

Treating systems

When two or more objects must move with the same magnitude of acceleration (like masses on strings, or boxes pushed into each other), we can treat the entire system as a single object when finding the acceleration.

Save this course

Save Forces and Newton's laws of motion to your list so you can find it easily later:
Save

Activities

Coming soon We're preparing activities for Forces and Newton's laws of motion. These are activities you can do either before, during, or after a course.

Career center

Learners who complete Forces and Newton's laws of motion will develop knowledge and skills that may be useful to these careers:

Reading list

We haven't picked any books for this reading list yet.

Share

Help others find this course page by sharing it with your friends and followers:

Similar courses

Similar courses are unavailable at this time. Please try again later.
Our mission

OpenCourser helps millions of learners each year. People visit us to learn workspace skills, ace their exams, and nurture their curiosity.

Our extensive catalog contains over 50,000 courses and twice as many books. Browse by search, by topic, or even by career interests. We'll match you to the right resources quickly.

Find this site helpful? Tell a friend about us.

Affiliate disclosure

We're supported by our community of learners. When you purchase or subscribe to courses and programs or purchase books, we may earn a commission from our partners.

Your purchases help us maintain our catalog and keep our servers humming without ads.

Thank you for supporting OpenCourser.

© 2016 - 2024 OpenCourser