We may earn an affiliate commission when you visit our partners.
Course image
Francisco Sahli Costabal

La mecánica de materiales, conocida también como resistencia de materiales o mecánica de sólidos, es una rama de la mecánica aplicada que estudia el comportamiento de cuerpos sólidos en equilibrio no sometidos a aceleraciones ante diferentes estados de carga o solicitaciones externas (tracciones, compresiones o fuerzas de corte). El objetivo fundamental de esta ciencia es establecer los esfuerzos internos y las deformaciones producidas por efecto de las cargas externas, con el fin de diseñar cualquier tipo de estructura que sirva a su propósito sin presentar fallas.

Read more

La mecánica de materiales, conocida también como resistencia de materiales o mecánica de sólidos, es una rama de la mecánica aplicada que estudia el comportamiento de cuerpos sólidos en equilibrio no sometidos a aceleraciones ante diferentes estados de carga o solicitaciones externas (tracciones, compresiones o fuerzas de corte). El objetivo fundamental de esta ciencia es establecer los esfuerzos internos y las deformaciones producidas por efecto de las cargas externas, con el fin de diseñar cualquier tipo de estructura que sirva a su propósito sin presentar fallas.

A lo largo del curso, se estudiarán tres conceptos fundamentales de esta disciplina, como lo son: el equilibrio de fuerzas y momentos; la compatibilidad geométrica de las deformaciones; y la relación entre esfuerzos internos y deformaciones.

El curso combinará videos donde se explicarán los conceptos teóricos y demostrarán sus aplicaciones, con test para que los estudiantes practiquen de manera independiente los conocimientos adquiridos.

Enroll now

Two deals to help you save

We found two deals and offers that may be relevant to this course.
Save money when you learn. All coupon codes, vouchers, and discounts are applied automatically unless otherwise noted.

What's inside

Syllabus

Bienvenida al curso
¡Bienvenidos y bienvenidas! Este curso tiene como propósito introducir los conceptos básicos para analizar como resisten y se deforman estructuras de distintos materiales con diversas solicitaciones, con el fin de diseñar cualquier tipo de estructura que sirva a su propósito sin presentar fallas.
Read more
Módulo 1: Conceptos básicos de mecánica
Esta primera unidad abordará los conceptos fundamentales para comprender el equilibrio y movimiento de cuerpos. Nos enfocaremos en la estática, examinando cómo las fuerzas y momentos afectan el comportamiento de un cuerpo y cómo este puede lograr el equilibrio.
Módulo 2: Introducción a la mecánica de cuerpos deformables
En esta segunda unidad, nos adentraremos en el estudio de cuerpos deformables, centrándonos en la descripción proporcionada por la Ley de Hooke. Aquí, se introducirán conceptos esenciales, como la compatibilidad geométrica y la relación entre fuerza y deformación, que desempeñan un papel crucial para comprender y modelar el comportamiento de los cuerpos estudiados. Analizaremos además el módulo de Young, que describe la respuesta elástica de diversos materiales a la aplicación de fuerzas externas.
Módulo 3: Esfuerzo y deformación unitaria
En la tercera unidad, nos adentraremos en los esfuerzos y deformaciones unitarias. Exploraremos los tipos de esfuerzos, normales y de corte, que afectan un punto en un cuerpo. Aprenderemos sobre el tensor de esfuerzos y su utilidad en el análisis de un cuerpo, incluyendo cómo encontrar los esfuerzos internos según las condiciones de borde. Abordaremos la transformación de ejes, tanto en su método matemático como gráfico, para comprender cómo los esfuerzos y deformaciones se ajustan en diferentes direcciones.
Módulo 4: Relaciones esfuerzo - Deformación unitaria
En la última unidad, exploraremos en detalle las relaciones esfuerzo-deformación descritas por la Ley de Hooke generalizada. Analizaremos cómo esta ley combina equilibrio diferencial y compatibilidad geométrica para el estudio detallado de cuerpos deformables. Abordaremos nuevos conceptos que afectan en la deformación, como la razón de Poisson y las diferencias de temperatura. Finalmente, examinaremos varios criterios de fluencia para asegurar que los esfuerzos se mantengan en rangos deseados.
Cierre del curso
Les queremos agradecer el habernos acompañado en el curso. Esperamos que los contenidos abordados sean un real aporte en tu carrera profesional /laboral.

Good to know

Know what's good
, what to watch for
, and possible dealbreakers
Para estudiantes de ingeniería civil o mecánica, arquitectos y cualquiera que desee comprender cómo los cuerpos sólidos resisten y se deforman
Explora los conceptos básicos de la mecánica de materiales, brindando una base sólida para estudios posteriores
Desarrolla habilidades analíticas para comprender el comportamiento de estructuras bajo cargas externas
Proporciona una comprensión integral de los esfuerzos internos y las deformaciones, cruciales para diseñar estructuras seguras y eficientes
Presenta una combinación de videos explicativos, pruebas de práctica y discusiones, ofreciendo un enfoque de aprendizaje atractivo e interactivo
Impartido por expertos en mecánica de materiales con experiencia en la industria y la investigación

Save this course

Save Mecánica de materiales to your list so you can find it easily later:
Save

Activities

Be better prepared before your course. Deepen your understanding during and after it. Supplement your coursework and achieve mastery of the topics covered in Mecánica de materiales with these activities:
Review the course syllabus and readings
Prepare for the course by familiarizing yourself with the course materials.
Show steps
  • Read the course syllabus thoroughly.
  • Skim through the assigned readings for the first few weeks of the course.
  • Identify any concepts or topics that you are unfamiliar with.
Revise basic physics before starting the course
Review basic physics as it pertains to the real world. This will build a foundation of knowledge for the course.
Show steps
  • Read an introductory physics textbook or take an online course.
  • Work through practice problems.
  • Attend a physics tutor or study session.
Revise calculus skills
Practice calculus skills to prepare for the course and refresh knowledge.
Browse courses on Calculus
Show steps
  • Review calculus notes or textbooks.
  • Solve practice problems.
  • Attend a calculus tutor or study session.
Four other activities
Expand to see all activities and additional details
Show all seven activities
Compile a list of useful resources for studying
Gather resources to enhance understanding and prepare for assessments.
Show steps
  • Search online for textbooks, articles, videos, and websites related to the course topics.
  • Organize the resources into a list or database.
  • Share your list with classmates or post it on a course discussion board.
Create a concept map of important concepts
Create a visual representation of key concepts to improve understanding and retention.
Show steps
  • Identify key concepts from the course syllabus or readings.
  • Organize the concepts in a logical hierarchy.
  • Use different colors, shapes, and lines to represent relationships between concepts.
Solve practice problems regularly
Practice problem-solving to build proficiency and identify areas for improvement.
Show steps
  • Complete the practice problems assigned in the course.
  • Find additional practice problems online or in textbooks.
  • Attend a study group or work with a tutor to discuss problem-solving strategies.
  • Review your solutions and identify areas where you need more practice.
Develop a project that applies course concepts
Apply knowledge gained in the course to real-world situations, deepening understanding.
Show steps
  • Identify a problem or challenge that can be addressed using the concepts from the course.
  • Design a solution that incorporates the concepts you have learned.
  • Create a prototype or implement your solution.
  • Present your project to the class or share it with others.

Career center

Learners who complete Mecánica de materiales will develop knowledge and skills that may be useful to these careers:
Mechanical Engineer
Mechanical Engineers design, build, and test mechanical devices, including engines, machines, and other equipment. They use their knowledge of the principles of mechanics, materials science, and thermodynamics to design and develop new products and improve existing ones. This course can help Mechanical Engineers build a foundation in the principles of mechanics, including the equilibrium of forces and moments, and the compatibility of geometric deformations. This knowledge is essential for designing and building safe and efficient mechanical devices.
Materials Scientist
Materials Scientists study the structure and properties of materials, and develop new materials for use in a variety of applications. They use their knowledge of the principles of materials science, chemistry, and physics to develop new materials with improved properties, such as strength, durability, and conductivity. This course can help Materials Scientists build a foundation in the principles of mechanics, including the relationship between stress and strain, and the failure of materials. This knowledge is essential for developing new materials that can withstand the demands of real-world applications.
Civil Engineer
Civil Engineers design, build, and maintain infrastructure, such as bridges, buildings, and roads. They use their knowledge of the principles of civil engineering, including structural mechanics, to design and build safe and efficient structures. This course can help Civil Engineers build a foundation in the principles of mechanics, including the equilibrium of forces and moments, and the compatibility of geometric deformations. This knowledge is essential for designing and building safe and efficient civil structures.
Automotive Engineer
Automotive Engineers design, build, and test automobiles and other motor vehicles. They use their knowledge of the principles of automotive engineering, including vehicle dynamics, powertrains, and emissions control, to design and build safe and efficient vehicles. This course can help Automotive Engineers build a foundation in the principles of mechanics, including the equilibrium of forces and moments, and the compatibility of geometric deformations. This knowledge is essential for designing and building safe and efficient motor vehicles.
Robotics Engineer
Robotics Engineers design, build, and test robots. They use their knowledge of the principles of robotics, including mechanical design, control systems, and artificial intelligence, to design and build robots that can perform a variety of tasks. This course can help Robotics Engineers build a foundation in the principles of mechanics, including the equilibrium of forces and moments, and the compatibility of geometric deformations. This knowledge is essential for designing and building safe and efficient robots.
Aerospace Engineer
Aerospace Engineers design, build, and test aircraft, spacecraft, and other aerospace vehicles. They use their knowledge of the principles of aerospace engineering, including aerodynamics, propulsion, and structural mechanics, to design and build safe and efficient vehicles. This course can help Aerospace Engineers build a foundation in the principles of mechanics, including the equilibrium of forces and moments, and the compatibility of geometric deformations. This knowledge is essential for designing and building safe and efficient aerospace vehicles.
Manufacturing Engineer
Manufacturing Engineers plan, design, and implement manufacturing processes. They use their knowledge of the principles of manufacturing engineering, including materials science, process engineering, and quality control, to develop and improve manufacturing processes. This course can help Manufacturing Engineers build a foundation in the principles of mechanics, including the equilibrium of forces and moments, and the compatibility of geometric deformations. This knowledge is essential for developing and improving manufacturing processes that produce high-quality products.
Product Design Engineer
Product Design Engineers design and develop new products. They use their knowledge of the principles of product design, including human factors, aesthetics, and materials science, to create products that are both functional and desirable. This course can help Product Design Engineers build a foundation in the principles of mechanics, including the equilibrium of forces and moments, and the compatibility of geometric deformations. This knowledge is essential for designing and developing products that are safe, durable, and easy to use.
Biomedical Engineer
Biomedical Engineers design and develop medical devices and technologies. They use their knowledge of the principles of biomedical engineering, including biomaterials, tissue engineering, and medical imaging, to develop new ways to diagnose and treat diseases. This course can help Biomedical Engineers build a foundation in the principles of mechanics, including the equilibrium of forces and moments, and the compatibility of geometric deformations. This knowledge is essential for designing and developing medical devices and technologies that are safe and effective.
Chemical Engineer
Chemical Engineers design, build, and operate chemical plants and processes. They use their knowledge of the principles of chemical engineering, including chemical reaction engineering, mass transfer, and heat transfer, to design and operate chemical plants that produce a variety of products, such as chemicals, fuels, and pharmaceuticals. This course may help Chemical Engineers build a foundation in the principles of mechanics, including the equilibrium of forces and moments, and the compatibility of geometric deformations. This knowledge may be useful for designing and operating chemical plants that are safe and efficient.
Electrical Engineer
Electrical Engineers design, build, and test electrical systems and devices. They use their knowledge of the principles of electrical engineering, including circuit theory, electronics, and power systems, to design and build electrical systems that are safe and efficient. This course may help Electrical Engineers build a foundation in the principles of mechanics, including the equilibrium of forces and moments, and the compatibility of geometric deformations. This knowledge may be useful for designing and building electrical systems that are safe and reliable.
Computer Engineer
Computer Engineers design and build computer systems and software. They use their knowledge of the principles of computer engineering, including computer architecture, operating systems, and software engineering, to design and build computer systems that are fast, reliable, and secure. This course may help Computer Engineers build a foundation in the principles of mechanics, including the equilibrium of forces and moments, and the compatibility of geometric deformations. This knowledge may be useful for designing and building computer systems that are durable and reliable.
Software Engineer
Software Engineers design, develop, and maintain software applications. They use their knowledge of the principles of software engineering, including software design, programming languages, and databases, to develop software applications that are reliable, efficient, and easy to use. This course may help Software Engineers build a foundation in the principles of mechanics, including the equilibrium of forces and moments, and the compatibility of geometric deformations. This knowledge may be useful for designing and developing software applications that are robust and scalable.
Web Developer
Web Developers design and develop websites and web applications. They use their knowledge of the principles of web development, including HTML, CSS, and JavaScript, to create websites and web applications that are visually appealing, easy to use, and accessible. This course may help Web Developers build a foundation in the principles of mechanics, including the equilibrium of forces and moments, and the compatibility of geometric deformations. This knowledge may be useful for designing and developing websites and web applications that are visually appealing and easy to navigate.
Technical Writer
Technical Writers create and maintain technical documentation, such as manuals, user guides, and training materials. They use their knowledge of the principles of technical writing, including clear and concise writing, to create technical documentation that is easy to understand and use. This course may help Technical Writers build a foundation in the principles of mechanics, including the equilibrium of forces and moments, and the compatibility of geometric deformations. This knowledge may be useful for creating technical documentation that is accurate and easy to understand.

Reading list

We've selected seven books that we think will supplement your learning. Use these to develop background knowledge, enrich your coursework, and gain a deeper understanding of the topics covered in Mecánica de materiales.
Este libro es un texto clásico en español sobre mecánica de materiales. Es completo y riguroso, y cubre todos los temas del curso. Es una buena opción para estudiantes que buscan una base sólida en el tema.
Este libro es una opción más concisa y accesible que los dos libros anteriores. Es una buena opción para estudiantes que buscan una introducción al tema.
Este libro es un clásico en el campo de la teoría de la elasticidad. Es una buena opción para estudiantes que buscan un tratamiento riguroso del tema.
Este libro es un texto clásico sobre teoría de la plasticidad. Es una buena opción para estudiantes que buscan profundizar en el tema.
Este libro es un texto clásico sobre mecánica de la fractura. Es una buena opción para estudiantes que buscan profundizar en el tema.
Este libro es un texto clásico sobre fatiga de materiales. Es una buena opción para estudiantes que buscan profundizar en el tema.

Share

Help others find this course page by sharing it with your friends and followers:

Similar courses

Here are nine courses similar to Mecánica de materiales.
Equilibrio, ¿por qué se caen las cosas?
Most relevant
El suelo en el Sistema de Siembra Directa
Most relevant
Viscoelasticidad y comportamiento mecánico-dinámico de...
Most relevant
Fomentando la participación de las mujeres en STEM a...
Most relevant
Introducción a los ritmos y relojes biológicos
Most relevant
Materiales avanzados en ingeniería derivados de laminados...
Most relevant
Introducción a la gravedad cuántica de lazos
Most relevant
Introducción a la mecánica de suelos
Most relevant
Definición y Medición
Most relevant
Our mission

OpenCourser helps millions of learners each year. People visit us to learn workspace skills, ace their exams, and nurture their curiosity.

Our extensive catalog contains over 50,000 courses and twice as many books. Browse by search, by topic, or even by career interests. We'll match you to the right resources quickly.

Find this site helpful? Tell a friend about us.

Affiliate disclosure

We're supported by our community of learners. When you purchase or subscribe to courses and programs or purchase books, we may earn a commission from our partners.

Your purchases help us maintain our catalog and keep our servers humming without ads.

Thank you for supporting OpenCourser.

© 2016 - 2024 OpenCourser