We may earn an affiliate commission when you visit our partners.
Course image
Charles Russell Severance

Este curso presentará las estructuras de datos básicas del lenguaje de programación Python. Veremos los conceptos básicos de la programación de procedimientos y exploraremos cómo podemos usar las estructuras de datos integrados de Python, como listas, diccionarios y tuplas, para realizar análisis de datos cada vez más complejos. Este curso abarcará los capítulos 6 a 10 del libro de texto “Python para todos”. Este curso cubre Python 3.

Enroll now

What's inside

Syllabus

Capítulo seis: Cadenas
En esta clase, continuamos donde lo dejamos en la clase anterior, comenzando en el capítulo 6 del libro de texto y cubriendo las cadenas y pasando a las estructuras de datos. La segunda semana de esta clase se reserva al hecho de instalar Python si realmente desea ejecutar las aplicaciones en su computadora de escritorio o portátil. Si decide no instalar Python, simplemente puede pasar a la tercera semana y adelantarse.
Read more
Unidad: Instalación y uso de Python
En este módulo, podrá realizar la configuración para escribir programas en Python. No requerimos que se instale Python para esta clase. Puede escribir y probar programas de Python en el navegador usando el "Sitio de prueba de código Python" en esta lección. Lea el material “Uso de Python en esta clase” para obtener más detalles.
Capítulo siete: Archivos
Hasta ahora, hemos estado trabajando con datos que se leen desde el usuario o con datos en constantes. Pero los programas reales procesan cantidades mucho mayores de datos al leer y escribir archivos en el almacenamiento secundario de su computadora. En este capítulo comenzaremos a escribir nuestros primeros programas que leen, escanean y procesan datos reales.
Capítulo ocho: Listas
Dado que queremos resolver problemas más complejos en Python, necesitamos variables más poderosas. Hasta ahora hemos estado usando variables simples para almacenar números o cadenas en las que tenemos un solo valor en una variable. Comenzando con las listas, almacenaremos muchos valores en una sola variable utilizando un esquema de indexación para almacenar, organizar y recuperar diferentes valores de una sola variable. A estas variables de varios valores las llamamos “recopilaciones” o “estructuras de datos”.
Capítulo nueve: Diccionarios
El diccionario Python es una de sus estructuras de datos más poderosas. En lugar de representar valores en una lista lineal, los diccionarios almacenan datos como pares clave/valor. El uso de pares clave/valor nos da una simple “base de datos” en memoria en una sola variable de Python.
Capítulo diez: Tuplas
Las tuplas son nuestra tercera y última estructura básica de datos de Python. Las tuplas son una versión simple de las listas. A menudo, usamos tuplas junto con diccionarios para realizar tareas de varios pasos, como clasificar o enlazar todos los datos en un diccionario.
Graduación
Para celebrar su llegada al punto medio en nuestra especialización Python para todos, le damos la bienvenida para que asista a nuestra ceremonia de graduación en línea. No es muy extensa y presenta un orador de graduación y un discurso de graduación muy breve.

Good to know

Know what's good
, what to watch for
, and possible dealbreakers
Enseña los conceptos básicos de programación de procedimientos que son relevantes para los estudiantes de informática
Explora estructuras de datos básicas que son omnipresentes en la programación de computadoras
Este curso ofrece un enfoque práctico para analizar datos utilizando las estructuras de datos de Python
Está diseñado para estudiantes que ya tienen experiencia básica en programación
Este curso utiliza Python 3, que es una versión anterior de Python

Save this course

Save Estructuras de datos de Python to your list so you can find it easily later:
Save

Reviews summary

Excelente curso de estructuras de datos en python

Este curso sobre las estructuras de datos en Python ha recibido críticas muy positivas en general. Los estudiantes lo han calificado con un promedio de 5 estrellas y lo han elogiado por su claridad, concisión y relevancia para el análisis de datos.
Útil para el análisis de datos
"..."
Fácil de comprender
"excelente"

Activities

Be better prepared before your course. Deepen your understanding during and after it. Supplement your coursework and achieve mastery of the topics covered in Estructuras de datos de Python with these activities:
Read 'Python Crash Course, 2nd Edition'
Expand your knowledge of Python data structures and their applications by reading a comprehensive book that covers the topic in depth.
Show steps
  • Acquire a copy of 'Python Crash Course, 2nd Edition'.
  • Read the chapters on data structures, taking notes and highlighting key concepts.
  • Complete the exercises and projects in the book to apply your understanding.
Review Python syntax and data structures
Refreshing Python basics will strengthen your foundation and make learning new concepts easier.
Browse courses on Python
Show steps
  • Refer to your course materials or online resources
  • Review the basics of Python syntax, such as variables, data types, and operators
  • Revisit common data structures like lists, tuples, and dictionaries
Explore Python tutorials
Guided tutorials provide structured learning and can reinforce concepts covered in class.
Browse courses on Python
Show steps
  • Search for Python tutorials on platforms like YouTube, Udemy, and Coursera
  • Choose a tutorial that aligns with your learning objectives
  • Follow the tutorial step-by-step and practice coding examples
Two other activities
Expand to see all activities and additional details
Show all five activities
Resolve Python challenges
Solving Python challenges will enhance your understanding of Python syntax and expose you to a variety of coding problems.
Browse courses on Python
Show steps
  • Identify a Python challenge platform
  • Register and start solving challenges
  • Review your solutions and learn from mistakes
Join a Python study group
Engaging with peers allows for knowledge sharing, problem-solving, and staying motivated.
Browse courses on Python
Show steps
  • Find a study group or create one with classmates
  • Establish regular meeting times
  • Discuss Python concepts, work on projects, and provide feedback

Career center

Learners who complete Estructuras de datos de Python will develop knowledge and skills that may be useful to these careers:
Machine Learning Engineer
Machine Learning Engineers design and build machine learning models. They use their models to solve business problems, such as predicting customer churn or identifying fraud. This course can help you develop the skills needed to succeed as a Machine Learning Engineer. You will learn how to use Python to clean and analyze data, and how to create visualizations to communicate your findings. You will also gain experience working with real-world data sets.
Data Analyst
Data Analysts analyze data to extract meaningful insights and trends. They use their findings to help businesses make informed decisions. This course can help you develop the skills needed to succeed as a Data Analyst. You will learn how to use Python to clean and analyze data, and how to create visualizations to communicate your findings. You will also gain experience working with real-world data sets.
Data Engineer
Data Engineers build and maintain the infrastructure that supports data-driven organizations. This course can help you develop the skills needed to succeed as a Data Engineer. You will learn how to use Python to clean and analyze data, and how to create visualizations to communicate your findings. You will also gain experience working with real-world data sets.
Data Scientist
Data Scientists use their knowledge of statistics, mathematics, and computer science to solve business problems. This course can help you develop the skills needed to succeed as a Data Scientist. You will learn how to use Python to clean and analyze data, and how to create visualizations to communicate your findings. You will also gain experience working with real-world data sets.
Information Security Analyst
Information Security Analysts protect a business's information systems from cyberattacks. This course can help you develop the skills needed to succeed as an Information Security Analyst. You will learn how to use Python to clean and analyze data, and how to create visualizations to communicate your findings.
Financial Analyst
Financial Analysts use data to make investment decisions. This course can help you develop the skills needed to succeed as a Financial Analyst. You will learn how to use Python to clean and analyze data, and how to create visualizations to communicate your findings.
Marketing Analyst
Marketing Analysts use data to help businesses improve their marketing campaigns. This course can help you develop the skills needed to succeed as a Marketing Analyst. You will learn how to use Python to clean and analyze data, and how to create visualizations to communicate your findings.
Product Manager
Product Managers oversee the development and launch of new products. This course can help you develop the skills needed to succeed as a Product Manager. You will learn how to use Python to clean and analyze data, and how to create visualizations to communicate your findings.
Operations Manager
Operations Managers oversee the day-to-day operations of a business. This course can help you develop the skills needed to succeed as an Operations Manager. You will learn how to use Python to clean and analyze data, and how to create visualizations to communicate your findings.
Risk Manager
Risk Managers identify and mitigate risks. This course can help you develop the skills needed to succeed as a Risk Manager. You will learn how to use Python to clean and analyze data, and how to create visualizations to communicate your findings.
Project Manager
Project Managers lead and manage projects. This course can help you develop the skills needed to succeed as a Project Manager. You will learn how to use Python to clean and analyze data, and how to create visualizations to communicate your findings.
Business Analyst
Business Analysts use data to help businesses improve their operations. This course can help you develop the skills needed to succeed as a Business Analyst. You will learn how to use Python to clean and analyze data, and how to create visualizations to communicate your findings.
Software Engineer
Software Engineers design, develop, and maintain software applications. This course can help you develop the skills needed to succeed as a Software Engineer. You will learn how to use Python to write clean and efficient code. You will also gain experience working with real-world software projects.
Database Administrator
Database Administrators design, implement, and maintain databases. This course can help you develop the skills needed to succeed as a Database Administrator. You will learn how to use Python to interact with databases, and how to optimize database performance.
Compliance Manager
Compliance Managers ensure that a business complies with all applicable laws and regulations. This course can help you develop the skills needed to succeed as a Compliance Manager. You will learn how to use Python to clean and analyze data, and how to create visualizations to communicate your findings.

Reading list

We've selected 16 books that we think will supplement your learning. Use these to develop background knowledge, enrich your coursework, and gain a deeper understanding of the topics covered in Estructuras de datos de Python.
Provides a comprehensive introduction to Python, covering the basics of programming, data structures, and algorithms. It good starting point for students who want to learn more about Python and its applications.
Good textbook for students who are new to computer science and programming. It covers the basics of Python, including data structures, algorithms, and object-oriented programming.
Good introduction to Python for beginners. It covers the basics of Python, including data structures, algorithms, and object-oriented programming, and it is written in a clear and concise style.
Good reference for students who want to learn more about Python. It covers the basics of Python, including data structures, algorithms, and object-oriented programming, and it is written in a clear and concise style.
Good reference for students who want to learn more about Python. It covers the basics of Python, including data structures, algorithms, and object-oriented programming, and it is written in a clear and concise style.
Good choice for students who want to learn Python in a fun and engaging way. It uses a humorous approach to teaching Python, and it covers the basics of Python, including data structures, algorithms, and object-oriented programming.
Good choice for students who want to learn more about Python's advanced features. It covers topics such as metaprogramming, decorators, and generators, and it is written in a clear and concise style.
Good resource for students who want to learn more about Python's built-in functions and modules. It covers a wide range of topics, including data structures, algorithms, and object-oriented programming, and it is written in a clear and concise style.
Good choice for students who are new to programming. It covers the basics of Python, including data structures, algorithms, and object-oriented programming, and it is written in a clear and concise style.
Good choice for students who want to learn the basics of Python quickly. It covers the basics of Python, including data structures, algorithms, and object-oriented programming, and it is written in a clear and concise style.
Good resource for students who want to learn more about Python's built-in functions and modules. It covers a wide range of topics, including data structures, algorithms, and object-oriented programming, and it is written in a clear and concise style.
Good choice for students who want to learn more about using Python for data analysis. It covers topics such as data cleaning, data manipulation, and data visualization, and it is written in a clear and concise style.
Good choice for students who want to learn more about using Python for machine learning. It covers topics such as supervised learning, unsupervised learning, and reinforcement learning, and it is written in a clear and concise style.
Good choice for students who want to learn more about using Python for bioinformatics. It covers topics such as sequence analysis, gene expression analysis, and protein structure prediction, and it is written in a clear and concise style.
Good choice for students who want to learn more about using Python for finance. It covers topics such as financial data analysis, financial modeling, and risk management, and it is written in a clear and concise style.

Share

Help others find this course page by sharing it with your friends and followers:

Similar courses

Here are nine courses similar to Estructuras de datos de Python.
Estructuras de Datos con Python
Most relevant
Estructuras de datos en Python
Most relevant
Fundamentos TIC para profesionales de negocios:...
Most relevant
Internet de las Cosas: Fundamentos de Python
Most relevant
Introducción a la programación en Java: estructuras de...
Most relevant
Algoritmos y Programación en R
Most relevant
Introducción a R para ciencia de datos
Most relevant
Ciencia de Datos: Fundamentos de R
Most relevant
Programar en Python
Most relevant
Our mission

OpenCourser helps millions of learners each year. People visit us to learn workspace skills, ace their exams, and nurture their curiosity.

Our extensive catalog contains over 50,000 courses and twice as many books. Browse by search, by topic, or even by career interests. We'll match you to the right resources quickly.

Find this site helpful? Tell a friend about us.

Affiliate disclosure

We're supported by our community of learners. When you purchase or subscribe to courses and programs or purchase books, we may earn a commission from our partners.

Your purchases help us maintain our catalog and keep our servers humming without ads.

Thank you for supporting OpenCourser.

© 2016 - 2024 OpenCourser