본 강의에서는 머신 러닝 분야에서의 보안 및 프라이버시와 관련된 기본 개념을 살펴봅니다. 그 기저에 깔린 윤리를 깊이 있게 탐구하면서, 유효한 예측 모델을 구축하는 과정에서 사용자의 프라이버시를 보호하는 방법을 알아보겠습니다. 또한 두 가지 심층 질문을 통해, 기업이 알고리즘을 구현하는 방법과 그에 따라 현재와 미래에 사용자 프라이버시 및 투명성에 영향을 미치는 방법도 모색할 것입니다.
OpenCourser helps millions of learners each year. People visit us to learn workspace skills, ace their exams, and nurture their curiosity.
Our extensive catalog contains over 50,000 courses and twice as many books. Browse by search, by topic, or even by career interests. We'll match you to the right resources quickly.
Find this site helpful? Tell a friend about us.
We're supported by our community of learners. When you purchase or subscribe to courses and programs or purchase books, we may earn a commission from our partners.
Your purchases help us maintain our catalog and keep our servers humming without ads.
Thank you for supporting OpenCourser.