We may earn an affiliate commission when you visit our partners.
Course image
Google Cloud Training

¿Desea saber sobre Vertex AI Feature Store? ¿Desea saber cómo mejorar la exactitud de los modelos de AA o averiguar qué columnas de datos crean los atributos más útiles? Le damos la bienvenida a Feature Engineering, donde analizaremos los atributos buenos y malos, y cómo se los puede procesar previamente y transformar para aprovecharlos al máximo en sus modelos. El curso incluye contenido y labs sobre la ingeniería de atributos en los que se usan BigQuery ML, Keras y TensorFlow.

Enroll now

Two deals to help you save

We found two deals and offers that may be relevant to this course.
Save money when you learn. All coupon codes, vouchers, and discounts are applied automatically unless otherwise noted.

What's inside

Syllabus

Introducción
En este módulo, se brinda una descripción general del curso y sus objetivos.
Introducción a Vertex AI Feature Store
En este módulo, se presenta Vertex AI Feature Store.
Read more
De los datos sin procesar a los atributos
La ingeniería de atributos suele ser la fase más larga y difícil de la creación de proyectos de AA. En el proceso de ingeniería de atributos, se comienza con los datos sin procesar y se utiliza el propio conocimiento del dominio para crear atributos que hagan funcionar los algoritmos de aprendizaje automático. En este módulo, exploramos qué elementos son buenos atributos y cómo representarlos en un modelo de AA.
Ingeniería de atributos
En este módulo, se analizan las diferencias entre el aprendizaje automático y las estadísticas, y cómo realizar ingeniería de atributos en BigQuery ML y Keras. También abordaremos algunas prácticas avanzadas de ingeniería de atributos.
Procesamiento previo y creación de atributos
En este módulo, aprenderá más sobre Dataflow, una tecnología complementaria a Apache Beam. Ambas soluciones pueden ayudar a crear y ejecutar el procesamiento previo y la ingeniería de atributos.
Combinaciones de atributos: TensorFlow Playground
En el aprendizaje automático tradicional, las combinaciones de atributos no desempeñan un rol significativo. Sin embargo, en los métodos modernos de AA, estas son una parte invaluable de su kit de herramientas. En este módulo, aprenderá a reconocer los tipos de problemas en los que las combinaciones de atributos son un medio potente para facilitar el aprendizaje automático.
Introducción a TensorFlow Transform
TensorFlow Transform (tf.Transform) es una biblioteca para el procesamiento previo de datos con TensorFlow que resulta útil cuando este proceso requiere un pase completo de datos. Por ejemplo, normalizar un valor de entrada según la media y la desviación estándar, generar números enteros a partir del vocabulario analizando valores en todos los ejemplos de entrada y agrupar las entradas según la distribución de datos observada. En este módulo, explicaremos los casos de uso de tf.Transform.
Resumen
Este módulo es un resumen del curso Feature Engineering.

Good to know

Know what's good
, what to watch for
, and possible dealbreakers
El programa aprueba el uso de BigQuery ML, Keras y TensorFlow
Ofrece oportunidades para la práctica a través de laboratorios sobre ingeniería de características
Se concentra en la ingeniería de atributos, un componente crucial para modelos de AA efectivos
Requiere experiencia previa en aprendizaje automático y estadísticas
Impartido por Google Cloud Training, reconocido por su experiencia en la nube

Save this course

Save Feature Engineering en Español to your list so you can find it easily later:
Save

Reviews summary

Spanish feature engineering

This course will provide you with a strong foundation in Feature Engineering with plenty of practical examples. Reviewers particularly enjoyed the integration with BigQuery ML, Keras, and TensorFlow. Other highlights include learning about Vertex AI Feature Store, preprocessing, and attribute creation. Be prepared to encounter some theoretical content. Overall, learners found this course to be insightful and practical.
Integrates with BigQuery ML, Keras, and TensorFlow.
"El curso incluye contenido y labs sobre la ingeniería de atributos en los que se usan BigQuery ML, Keras y TensorFlow."
Many practical examples to enhance learning.
"Muy interesante"
Introduces Vertex AI Feature Store.
"Introducción a Vertex AI Feature Store"
Some theoretical content to be aware of.
"Demasiado teórico"

Activities

Be better prepared before your course. Deepen your understanding during and after it. Supplement your coursework and achieve mastery of the topics covered in Feature Engineering en Español with these activities:
Crear un resumen de los principales tipos de atributos
Mejorar la comprensión de los diferentes tipos de atributos y su importancia en la ingeniería de atributos.
Show steps
  • Definir y clasificar los tipos de atributos
  • Proporcionar ejemplos de cada tipo de atributo
  • Describir cómo se utilizan los diferentes tipos de atributos en el aprendizaje automático
Participar en discusiones sobre ingeniería de atributos
Comprender diversas perspectivas y abordar conceptos desafiantes mediante la interacción con compañeros.
Show steps
  • Participar en foros o grupos de estudio en línea
  • Asistir a sesiones de estudio grupales
  • Comentar y proporcionar comentarios sobre el trabajo de los demás
Realizar ejercicios de transformación de datos
Fortalecer las habilidades de ingeniería de atributos mediante la práctica de transformación de datos.
Show steps
  • Utilizar BigQuery ML y TensorFlow para transformar datos
  • Aplicar técnicas de normalización y estandarización
  • Experimentar con diferentes técnicas de codificación
Three other activities
Expand to see all activities and additional details
Show all six activities
Explorar los casos de uso de TensorFlow Transform
Ampliar el conocimiento de las técnicas avanzadas de ingeniería de atributos mediante el uso de TensorFlow Transform.
Show steps
  • Seguir tutoriales sobre TensorFlow Transform
  • Investigar los diferentes casos de uso de TensorFlow Transform
  • Aplicar TensorFlow Transform a un proyecto de ejemplo
Desarrollar una canalización de procesamiento previo y creación de atributos
Aplicar habilidades de ingeniería de atributos para crear una canalización funcional y efectiva.
Show steps
  • Diseñar la canalización de procesamiento previo y creación de atributos
  • Implementar la canalización utilizando Apache Beam o Dataflow
  • Evaluar el rendimiento de la canalización
Contribuir a proyectos de código abierto relacionados con la ingeniería de atributos
Aplicar conocimientos y habilidades a través de la colaboración en proyectos de código abierto.
Show steps
  • Identificar proyectos de código abierto relevantes para la ingeniería de atributos
  • Aportar correcciones de errores, nuevas funciones o mejoras de documentación
  • Colaborar con otros contribuyentes y mantener el proyecto

Career center

Learners who complete Feature Engineering en Español will develop knowledge and skills that may be useful to these careers:
Data Scientist
Data Scientists use their knowledge in programming and scientific methods to study data. This includes gathering, cleaning, managing, and analyzing data using sophisticated tools and scripts. They build predictive and prescriptive models based on data to help businesses make better decisions. This course may be helpful for Data Scientists as it will teach them how to use Feature Engineering to analyze attributes and improve the accuracy of their models.
Machine Learning Engineer
Machine Learning Engineers build, deploy, and maintain machine learning models. They work with Data Scientists to identify and solve business problems using machine learning. This course may be helpful for Machine Learning Engineers as it will teach them how to use Feature Engineering to improve the accuracy of their models.
Statistician
Statisticians use their knowledge of statistics to collect, analyze, interpret, and present data. They work in a variety of industries, including healthcare, finance, and education. This course may be helpful for Statisticians as it will teach them how to use Feature Engineering to analyze attributes and improve the accuracy of their models.
Data Analyst
Data Analysts use their knowledge of data analysis tools and techniques to extract insights from data. They work with businesses to help them make better decisions. This course may be helpful for Data Analysts as it will teach them how to use Feature Engineering to analyze attributes and improve the accuracy of their models.
Operations Research Analyst
Operations Research Analysts use their knowledge of mathematics and data analysis to help businesses improve their operations. They work with businesses to identify and solve problems, and they develop and implement solutions. This course may be helpful for Operations Research Analysts as it will teach them how to use Feature Engineering to analyze attributes and improve the accuracy of their models.
Business Analyst
Business Analysts use their knowledge of business and data analysis to help businesses improve their operations. They work with businesses to identify and solve problems, and they develop and implement solutions. This course may be helpful for Business Analysts as it will teach them how to use Feature Engineering to analyze attributes and improve the accuracy of their models.
Data Engineer
Data Engineers are responsible for building and maintaining data pipelines that collect, process, and store data for analysis by Data Scientists. They ensure the data is clean, reliable, and accessible for data analysis and reporting. This course may be helpful for Data Engineers as it will teach them how to use Feature Engineering to process and transform data for use in models.
Quantitative Analyst
Quantitative Analysts use their knowledge of mathematics and data analysis to help businesses make investment decisions. They work with businesses to analyze financial data and make recommendations on how to invest their money. This course may be helpful for Quantitative Analysts as it will teach them how to use Feature Engineering to analyze attributes and improve the accuracy of their models.
Financial Analyst
Financial Analysts use their knowledge of finance and data analysis to help businesses make investment decisions. They work with businesses to analyze financial data and make recommendations on how to invest their money. This course may be helpful for Financial Analysts as it will teach them how to use Feature Engineering to analyze attributes and improve the accuracy of their models.
Marketing Analyst
Marketing Analysts use their knowledge of marketing and data analysis to help businesses develop and implement marketing campaigns. They work with businesses to identify and target their target audience, and they develop and implement marketing campaigns to reach that audience. This course may be helpful for Marketing Analysts as it will teach them how to use Feature Engineering to analyze attributes and improve the accuracy of their models.
Risk Analyst
Risk Analysts use their knowledge of risk management and data analysis to help businesses identify and mitigate risks. They work with businesses to develop and implement risk management plans. This course may be helpful for Risk Analysts as it will teach them how to use Feature Engineering to analyze attributes and improve the accuracy of their models.
Software Engineer
Software Engineers design, develop, and maintain software applications. They use their knowledge of programming languages and software development tools to build and maintain applications that meet the needs of users. This course may be helpful for Software Engineers as it will teach them how to use Feature Engineering to improve the accuracy of their models.
Product Manager
Product Managers are responsible for the development and launch of new products and features. They work with engineers, designers, and marketers to bring new products to market. This course may be helpful for Product Managers as it will teach them how to use Feature Engineering to analyze attributes and improve the accuracy of their models.

Reading list

We've selected 12 books that we think will supplement your learning. Use these to develop background knowledge, enrich your coursework, and gain a deeper understanding of the topics covered in Feature Engineering en Español.
Provides a comprehensive overview of feature engineering, including techniques for data cleaning, transformation, and selection. It valuable resource for anyone who wants to learn more about feature engineering and its applications in machine learning.
Provides a practical guide to feature engineering, with a focus on Python code. It covers a wide range of topics, including data cleaning, transformation, and selection. It valuable resource for anyone who wants to learn more about feature engineering and its applications in machine learning.
Provides a comprehensive overview of statistical learning, including a discussion of feature engineering. It valuable resource for anyone who wants to learn more about statistical learning and its applications.
Provides a practical guide to data science, including a discussion of feature engineering. It valuable resource for anyone who wants to learn more about data science and its applications.
Provides a comprehensive overview of deep learning, including a discussion of feature engineering. It valuable resource for anyone who wants to learn more about deep learning and its applications.
Provides a comprehensive overview of reinforcement learning, including a discussion of feature engineering. It valuable resource for anyone who wants to learn more about reinforcement learning and its applications.
Provides a comprehensive overview of natural language processing, including a discussion of feature engineering. It valuable resource for anyone who wants to learn more about natural language processing and its applications.
Provides a comprehensive overview of time series analysis, including a discussion of feature engineering. It valuable resource for anyone who wants to learn more about time series analysis and its applications.
Provides a practical guide to feature engineering for predictive analytics. It covers a wide range of topics, including data cleaning, transformation, and selection. It valuable resource for anyone who wants to learn more about feature engineering and its applications in predictive analytics.
Provides a comprehensive overview of feature engineering for machine learning. It covers a wide range of topics, including data cleaning, transformation, and selection. It valuable resource for anyone who wants to learn more about feature engineering and its applications in machine learning.

Share

Help others find this course page by sharing it with your friends and followers:

Similar courses

Here are nine courses similar to Feature Engineering en Español.
Intro to TensorFlow en Español
Most relevant
Diseño de cursos para la comprensión de Grandes Ideas
Most relevant
Docencia con pedagogía activa mediada con tecnología...
Most relevant
Serverless Machine Learning con TensorFlow en GCP
Most relevant
Democracia y decisiones públicas. Introducción al...
Most relevant
Estrategias para ganar. Meteorología en la vuelta al mundo
Most relevant
La Innovación como aliado del Emprendimiento
Most relevant
El cerebro y las emociones en el lenguaje
Most relevant
Feature Engineering em Português Brasileiro
Most relevant
Our mission

OpenCourser helps millions of learners each year. People visit us to learn workspace skills, ace their exams, and nurture their curiosity.

Our extensive catalog contains over 50,000 courses and twice as many books. Browse by search, by topic, or even by career interests. We'll match you to the right resources quickly.

Find this site helpful? Tell a friend about us.

Affiliate disclosure

We're supported by our community of learners. When you purchase or subscribe to courses and programs or purchase books, we may earn a commission from our partners.

Your purchases help us maintain our catalog and keep our servers humming without ads.

Thank you for supporting OpenCourser.

© 2016 - 2024 OpenCourser