We may earn an affiliate commission when you visit our partners.
Course image
Google Cloud Training

¿Cuáles son las prácticas recomendadas para implementar el aprendizaje automático en Google Cloud? ¿Qué es Vertex AI y cómo se puede utilizar la plataforma para crear, entrenar e implementar rápidamente modelos de aprendizaje automático de AutoML sin escribir una sola línea de código? ¿Qué es el aprendizaje automático? ¿Qué tipos de problemas puede solucionar?

Read more

¿Cuáles son las prácticas recomendadas para implementar el aprendizaje automático en Google Cloud? ¿Qué es Vertex AI y cómo se puede utilizar la plataforma para crear, entrenar e implementar rápidamente modelos de aprendizaje automático de AutoML sin escribir una sola línea de código? ¿Qué es el aprendizaje automático? ¿Qué tipos de problemas puede solucionar?

Google considera que el aprendizaje automático es diferente: se trata de proporcionar una plataforma unificada para conjuntos de datos administrados, un almacén de atributos, una forma de crear, entrenar e implementar modelos de aprendizaje automático sin escribir una sola línea de código, así como proporcionar la capacidad de etiquetar datos y crear notebooks de Workbench utilizando frameworks como TensorFlow, SciKit-learn, Pytorch, R y otros. Vertex AI Platform también ofrece la posibilidad de entrenar modelos personalizados, crear canalizaciones de componentes y realizar predicciones en línea y por lotes. Además, analizamos las cinco fases para convertir un posible caso de uso en un recurso que pueda aprovechar la tecnología del aprendizaje automático y estudiamos por qué es importante no saltarse estas fases. Finalizamos con un reconocimiento de los sesgos que el aprendizaje automático puede amplificar y cómo reconocerlos.

Enroll now

What's inside

Syllabus

Module 0: Introducción al curso y a la serie
Este módulo es una introducción a la serie del curso y a los expertos de Google que lo impartirán.
Read more
Module 1: Qué significa centrarse en la IA
En este módulo, se aborda la creación de una estrategia de datos en torno al aprendizaje automático.
Module 2: Cómo trabaja Google con el aprendizaje automático
En este módulo, se comparten los conocimientos organizacionales que Google ha adquirido a lo largo de los años.
Module 3: Desarrollo del aprendizaje automático con Vertex AI
Todo aprendizaje automático comienza con algún tipo de objetivo, ya sea un caso de uso empresarial o académico, o un propósito que se intenta lograr. En este módulo, se revisa el proceso para determinar si el modelo está listo para producción, luego de la fase de “prueba de concepto” o “experimentación”.
Module 4: Desarrollo del aprendizaje automático con Notebooks de Vertex
En este módulo, se exploran los notebooks administrados y los notebooks administrados por el usuario para el desarrollo del aprendizaje automático en Vertex AI.
Module 5: Prácticas recomendadas para implementar el aprendizaje automático en Vertex AI
En este módulo, se revisan las prácticas recomendadas para una serie de procesos de aprendizaje automático en Vertex AI.
Module 6: Desarrollo con IA responsable
En este módulo, se analiza por qué los sistemas de aprendizaje automático no son exactos de forma predeterminada, y algunos de los aspectos que hay que tener en cuenta a la hora de infundir el AA en los productos.
Module 7: Resumen
Este módulo es un resumen del curso Cómo trabaja Google con el aprendizaje automático.

Good to know

Know what's good
, what to watch for
, and possible dealbreakers
Aprenden procesos de aprendizaje automático en Vertex AI, una plataforma de Google Cloud
Aprenden a crear, entrenar e implementar rápidamente modelos de Machine Learning AutoML
Entienden las mejores prácticas para implementar Machine Learning en Google Cloud
Conocen los cinco pasos para transformar un posible caso de uso en un recurso que aprovecha la tecnología de Machine Learning
Comprenden la importancia de no saltarse las cinco fases para transformar un caso de uso en un recurso que aprovecha el Machine Learning
Reconocen los sesgos que el Machine Learning puede amplificar y cómo identificarlos

Save this course

Save How Google does Machine Learning en Español to your list so you can find it easily later:
Save

Reviews summary

Google's approach to machine learning

This course offers a comprehensive overview of Google's approach to machine learning. It highlights the importance of AI in business strategy, showcases real-world applications, and provides hands-on experience through interactive labs. The course covers the fundamentals of machine learning, including data preparation, model training, and deployment. It also emphasizes ethical considerations and responsible AI development.
The course covers ethical and responsible AI.
"Realmente satisfactorio! No me esperaba el acercamiento que se tuvo a las diferentes APIs de ML, aunado a el detalle que se dio a evitar el sesgo desde una etapa temprana siendo un curso introductorio."
The course discusses business applications of AI.
"Habilidades y perspectivas de negocio, como hacer escalables los productos, la importancia de conocer los datos..."
The course introduces Google Cloud Platform.
"diferentes tecnologías de Google de forma introductoria."
Hands-on labs provide practical experience.
"Me gusta los laboratorios. "
Some reviewers experienced technical issues.
"La herramienta de qlabs no funciona, hay que entrar a la versión en inglés."

Activities

Be better prepared before your course. Deepen your understanding during and after it. Supplement your coursework and achieve mastery of the topics covered in How Google does Machine Learning en Español with these activities:
Organize course materials
Improve your understanding and retention of course materials by organizing them effectively.
Show steps
  • Review notes and assignments
  • Create summaries
  • Organize materials digitally
Read "Hands-On Machine Learning with Scikit-Learn, Keras, and TensorFlow"
Gain a solid understanding of machine learning concepts and techniques.
Show steps
  • Read the book
  • Work through the exercises
Review linear algebra
Strengthen your foundational understanding of linear algebra, a crucial skill for machine learning.
Browse courses on Linear Algebra
Show steps
  • Review textbooks
  • Solve practice problems
Six other activities
Expand to see all activities and additional details
Show all nine activities
Follow tutorials on Vertex AI
Enhance your understanding of Vertex AI's features and functionalities through hands-on tutorials.
Browse courses on Vertex AI
Show steps
  • Find relevant tutorials
  • Follow the instructions
Attend a Vertex AI workshop
Acquire practical knowledge and guidance from experts by attending a Vertex AI workshop.
Browse courses on Vertex AI
Show steps
  • Find a relevant workshop
  • Register and attend
  • Participate actively
Implement Vertex AI platform
Implement and deploy machine learning models using Vertex AI's capabilities.
Browse courses on Vertex AI
Show steps
  • Create a Vertex AI project
  • Configure a dataset
  • Train a model
  • Deploy a model
Train with Vertex AI notebooks
Gain hands-on experience training machine learning models with Vertex AI notebooks.
Browse courses on Vertex AI
Show steps
  • Create a Vertex AI notebook
  • Import data
  • Train a model
  • Evaluate the model
Build a machine learning model pipeline
Design and implement a complete machine learning model pipeline to automate the process of data preparation, model training, and evaluation.
Browse courses on Machine Learning
Show steps
  • Define the pipeline
  • Configure the components
  • Train the pipeline
  • Evaluate the pipeline
Develop a machine learning application
Apply machine learning techniques to solve a real-world problem through an application.
Browse courses on Machine Learning
Show steps
  • Identify a problem
  • Gather data
  • Train a model
  • Deploy the application

Career center

Learners who complete How Google does Machine Learning en Español will develop knowledge and skills that may be useful to these careers:
Machine Learning Engineer
Machine Learning Engineers are responsible for designing, building, and deploying machine learning models. They work closely with data scientists and software engineers to ensure that models are accurate, efficient, and scalable. This course provides a comprehensive overview of Google's approach to machine learning, including best practices for data preparation, model training, and deployment. It also covers advanced topics such as model interpretability and responsible AI. As such, this course can help you build the skills and knowledge you need to succeed as a Machine Learning Engineer.
Data Scientist
Data Scientists use their knowledge of machine learning, statistics, and data analysis to extract insights from data. They work on a variety of projects, such as developing new products, improving customer service, and reducing costs. This course provides a strong foundation in machine learning, including topics such as data preparation, model training, and evaluation. It also covers advanced topics such as natural language processing and computer vision. As such, this course can help you build the skills and knowledge you need to succeed as a Data Scientist.
Software Engineer
Software Engineers design, develop, and maintain software applications. They work on a variety of projects, such as developing new products, improving customer service, and reducing costs. This course provides a strong foundation in machine learning, including topics such as data preparation, model training, and deployment. It also covers advanced topics such as distributed training and model serving. As such, this course can help you build the skills and knowledge you need to succeed as a Software Engineer.
Data Analyst
Data Analysts use their knowledge of data analysis and statistics to extract insights from data. They work on a variety of projects, such as identifying trends, forecasting demand, and improving customer service. This course provides a strong foundation in machine learning, including topics such as data preparation, model training, and evaluation. It also covers advanced topics such as natural language processing and computer vision. As such, this course can help you build the skills and knowledge you need to succeed as a Data Analyst.
Risk Analyst
Risk Analysts use their knowledge of mathematics, statistics, and financial modeling to assess and manage risks. They work on a variety of projects, such as developing new risk management strategies, pricing insurance products, and managing regulatory compliance. This course provides a strong foundation in machine learning, including topics such as data preparation, model training, and evaluation. It also covers advanced topics such as risk modeling and portfolio optimization. As such, this course can help you build the skills and knowledge you need to succeed as a Risk Analyst.
Consultant
Consultants use their knowledge of business and technology to help organizations improve their operations. They work on a variety of projects, such as developing new products, improving customer service, and reducing costs. This course provides a strong foundation in machine learning, including topics such as data analysis, model interpretability, and responsible AI. It also covers advanced topics such as change management and organizational development. As such, this course can help you build the skills and knowledge you need to succeed as a Consultant.
Quantitative Analyst
Quantitative Analysts use their knowledge of mathematics, statistics, and computer science to develop and implement financial models. They work on a variety of projects, such as developing new trading strategies, pricing financial instruments, and managing risk. This course provides a strong foundation in machine learning, including topics such as data preparation, model training, and evaluation. It also covers advanced topics such as time series analysis and stochastic processes. As such, this course can help you build the skills and knowledge you need to succeed as a Quantitative Analyst.
Product Manager
Product Managers are responsible for developing and launching new products. They work closely with engineers, designers, and marketers to ensure that products meet the needs of customers. This course provides a strong foundation in machine learning, including topics such as data analysis, model interpretability, and responsible AI. It also covers advanced topics such as product roadmapping and customer segmentation. As such, this course can help you build the skills and knowledge you need to succeed as a Product Manager.
Business Analyst
Business Analysts use their knowledge of business and technology to help organizations improve their operations. They work on a variety of projects, such as developing new products, improving customer service, and reducing costs. This course provides a strong foundation in machine learning, including topics such as data analysis, model interpretability, and responsible AI. It also covers advanced topics such as business process modeling and financial analysis. As such, this course can help you build the skills and knowledge you need to succeed as a Business Analyst.
Operations Research Analyst
Operations Research Analysts use their knowledge of mathematics, statistics, and computer science to solve complex problems in a variety of industries. They work on a variety of projects, such as developing new supply chain strategies, improving customer service, and reducing costs. This course provides a strong foundation in machine learning, including topics such as data preparation, model training, and evaluation. It also covers advanced topics such as optimization and simulation. As such, this course can help you build the skills and knowledge you need to succeed as an Operations Research Analyst.
Researcher
Researchers use their knowledge of machine learning to develop new algorithms and techniques. They work on a variety of projects, such as developing new ways to improve the accuracy of machine learning models, making machine learning models more interpretable, and developing new applications for machine learning. This course provides a strong foundation in machine learning, including topics such as data preparation, model training, and evaluation. It also covers advanced topics such as natural language processing, computer vision, and reinforcement learning. As such, this course can help you build the skills and knowledge you need to succeed as a Researcher.
Policymaker
Policymakers use their knowledge of machine learning to develop and implement policies that govern the use of this technology. This course provides a strong foundation in machine learning, including topics such as data analysis, model interpretability, and responsible AI. It also covers advanced topics such as algorithmic bias and fairness. As such, this course can help you build the skills and knowledge you need to succeed as a Policymaker.
Educator
Educators use their knowledge of machine learning to teach students about this emerging field. This course provides a strong foundation in machine learning, including topics such as data preparation, model training, and evaluation. It also covers advanced topics such as natural language processing, computer vision, and reinforcement learning. As such, this course can help you build the skills and knowledge you need to succeed as an Educator.
Nonprofit Leader
Nonprofit Leaders use their knowledge of machine learning to develop and implement programs that use this technology to solve social problems. This course provides a strong foundation in machine learning, including topics such as data analysis, model interpretability, and responsible AI. It also covers advanced topics such as natural language processing and computer vision. As such, this course can help you build the skills and knowledge you need to succeed as a Nonprofit Leader.
Entrepreneur
Entrepreneurs use their knowledge of business and technology to start and grow their own businesses. This course provides a strong foundation in machine learning, including topics such as data analysis, model interpretability, and responsible AI. It also covers advanced topics such as product development and marketing. As such, this course can help you build the skills and knowledge you need to succeed as an Entrepreneur.

Reading list

We've selected ten books that we think will supplement your learning. Use these to develop background knowledge, enrich your coursework, and gain a deeper understanding of the topics covered in How Google does Machine Learning en Español.
Este libro ofrece una visión general del aprendizaje automático, cubriendo temas como la teoría del aprendizaje, los algoritmos de aprendizaje y las aplicaciones del aprendizaje automático.
Este libro proporciona una base sólida en la ingeniería de aprendizaje automático, cubriendo temas como el ciclo de vida de los proyectos de aprendizaje automático, la gestión de datos, la selección de modelos, la evaluación y la implementación.
Este libro ofrece una introducción práctica al aprendizaje automático utilizando bibliotecas populares como Scikit-Learn, Keras y TensorFlow. Es útil para aquellos que buscan una guía práctica para construir y desplegar modelos de aprendizaje automático.
Este libro se centra en el aprendizaje profundo, que es un subcampo del aprendizaje automático que utiliza redes neuronales. Proporciona una base sólida para los conceptos y técnicas fundamentales del aprendizaje profundo.
Este libro proporciona una introducción completa al aprendizaje profundo, cubriendo temas como las redes neuronales, el aprendizaje por refuerzo y el procesamiento del lenguaje natural.
Este libro se centra en la interpretabilidad del aprendizaje automático, que es la capacidad de comprender las predicciones de los modelos de aprendizaje automático. Proporciona técnicas y herramientas para hacer que los modelos de aprendizaje automático sean más transparentes y explicables.
Este libro adopta un enfoque probabilístico del aprendizaje automático, proporcionando una base teórica sólida para los conceptos y algoritmos fundamentales. Es útil para aquellos que buscan una comprensión más profunda del fundamento matemático del aprendizaje automático.
Este libro se centra en los métodos de aprendizaje automático para datos escasos, que es un conjunto de datos que contienen muchos ceros. Proporciona algoritmos y técnicas para manejar datos escasos de manera efectiva.

Share

Help others find this course page by sharing it with your friends and followers:

Similar courses

Here are nine courses similar to How Google does Machine Learning en Español.
Launching into Machine Learning en Español
Most relevant
Modelos predictivos con Machine Learning
Most relevant
Intro to TensorFlow en Español
Most relevant
Introducción a R para ciencia de datos
Most relevant
Deep Learning: redes neuronales y aprendizaje profundo
Most relevant
Aprendizaje Automático con Python
Most relevant
Introducción a Machine Learning
Most relevant
Aprendizaje automático (machine learning) y ciencia de...
Most relevant
Machine Learning in the Enterprise - Español
Most relevant
Our mission

OpenCourser helps millions of learners each year. People visit us to learn workspace skills, ace their exams, and nurture their curiosity.

Our extensive catalog contains over 50,000 courses and twice as many books. Browse by search, by topic, or even by career interests. We'll match you to the right resources quickly.

Find this site helpful? Tell a friend about us.

Affiliate disclosure

We're supported by our community of learners. When you purchase or subscribe to courses and programs or purchase books, we may earn a commission from our partners.

Your purchases help us maintain our catalog and keep our servers humming without ads.

Thank you for supporting OpenCourser.

© 2016 - 2024 OpenCourser