We may earn an affiliate commission when you visit our partners.
Course image
Yves Perriard and Christian Koechli

Les moteurs électriques et les actionneurs en général font partie de notre quotidien ; on en trouve aussi bien dans l’industrie que dans les applications grand public : les automobiles, l’électroménager, les ordinateurs et même les téléphones portables utilisent des systèmes électromécaniques afin de créer de la force ou du mouvement.

Ce cours aborde les principes de base permettant le calcul, la simulation et la conception de systèmes électromécaniques tels que les actionneurs ou les moteurs électriques.

Le cours comprend les modules suivants :

Read more

Les moteurs électriques et les actionneurs en général font partie de notre quotidien ; on en trouve aussi bien dans l’industrie que dans les applications grand public : les automobiles, l’électroménager, les ordinateurs et même les téléphones portables utilisent des systèmes électromécaniques afin de créer de la force ou du mouvement.

Ce cours aborde les principes de base permettant le calcul, la simulation et la conception de systèmes électromécaniques tels que les actionneurs ou les moteurs électriques.

Le cours comprend les modules suivants :

  • Circuits magnétiques
  • Matériaux magnétiques
  • Transformateur monophasé
  • Conversion électromécanique
  • Systèmes dynamiques
  • Actionneurs

Pour chacun de ces modules, la matière est présentée non-seulement sous l’angle mathématique, afin de permettre la modélisation de systèmes complexes, mais aussi par des exemples d’applications pratiques et des démonstrations expérimentales.

What's inside

Learning objectives

  • Circuits magnétiques: potentiel magnétique, flux, réluctance, inductance propre et mutuelle, schéma magnétique équivalent
  • Matériaux magnétiques: domaine de weiss, saturation, hysteresis et courants de foucault, modélisation de l’aimant permanent
  • Transformateur monophasé: transformateur idéal et réel, schéma électrique équivalent
  • Conversion électromécanique: énergie et co-énergie magnétique, dérivée de la co-énergie, tenseur de maxwell, force de laplace
  • Systèmes dynamiques: modélisation dynamique, composante de la tension induite
  • Actionneurs: classification des actionneurs

Syllabus

Circuits magnétiques
Matériaux magnétiques
Transformateur monophasé
Conversion électromécanique
Read more
Systèmes dynamiques
Actionneurs

Good to know

Know what's good
, what to watch for
, and possible dealbreakers
Développe des compétences fondamentales en circuits magnétiques, matériaux magnétiques et actionneurs, qui sont essentielles pour les ingénieurs électriciens et les concepteurs de systèmes électromécaniques
Conçu pour les étudiants en génie électrique et les professionnels ayant une formation technique
Les instructeurs Yves Perriard et Christian Koechli sont des experts reconnus dans le domaine de l'électromécanique
Fournit des exemples pratiques et des démonstrations expérimentales pour illustrer les concepts théoriques
Le cours est complet, couvrant les sujets essentiels de l'électromécanique liés aux circuits magnétiques, aux matériaux magnétiques et aux actionneurs
Nécessite des connaissances préalables en mathématiques et en physique

Save this course

Save Conversion électromécanique I to your list so you can find it easily later:
Save

Activities

Be better prepared before your course. Deepen your understanding during and after it. Supplement your coursework and achieve mastery of the topics covered in Conversion électromécanique I with these activities:
Review DC electric circuits
Review basic DC electric circuits to refresh your knowledge and build a stronger foundation for this course.
Browse courses on Electric Circuits
Show steps
  • Read through your old notes or study materials on DC electric circuits.
  • Do practice questions or problems related to DC electric circuits.
Exercices de conversions magnétiques
Pratiquer les conversions entre les grandeurs magnétiques courantes (flux, champ magnétique, perméance, inductance) permettra de renforcer la compréhension des circuits magnétiques.
Show steps
  • Convertir un flux magnétique d'une unité à une autre (ex : Weber à Maxwell)
  • Convertir un champ magnétique d'une unité à une autre (ex : Tesla à Ampère/mètre)
  • Convertir une perméance d'une unité à une autre (ex : Henry à Weber/Ampère)
  • Convertir une inductance d'une unité à une autre (ex : Henry à microHenry)
Create a mind map of the course concepts
Create a mind map of the course concepts to visualize the connections between different topics and improve your understanding.
Show steps
  • Start with the main topic of the course as the central node of your mind map.
  • Add branches for each major concept or topic covered in the course.
  • Continue adding sub-branches to further break down the concepts and their relationships.
Nine other activities
Expand to see all activities and additional details
Show all 12 activities
Tutoriels sur les matériaux magnétiques
Regarder des tutoriels sur les propriétés magnétiques des matériaux (hystérésis, perméabilité, saturation) permettra d'approfondir les connaissances sur le comportement des matériaux magnétiques.
Show steps
  • Rechercher des tutoriels sur les matériaux magnétiques en français ou en anglais
  • Regarder les tutoriels et prendre des notes sur les concepts clés (domaine de Weiss, boucles d'hystérésis, perméabilité relative)
  • Résoudre des exercices pratiques sur les matériaux magnétiques
Practice solving problems on magnetic circuits
Practice solving problems on magnetic circuits to improve your understanding and reinforce the concepts covered in the course.
Browse courses on Magnetic Circuits
Show steps
  • Find practice problems or exercises on magnetic circuits online or in textbooks.
  • Work through the problems step-by-step, taking your time to understand each concept.
  • Check your answers against the provided solutions or ask for help from a tutor or instructor if needed.
Solve problems on electromechanical conversion
Solve problems on electromechanical conversion to deepen your understanding and develop problem-solving skills.
Show steps
  • Find practice problems or exercises on electromechanical conversion online or in textbooks.
  • Work through the problems step-by-step, taking your time to understand each concept.
  • Check your answers against the provided solutions or ask for help from a tutor or instructor if needed.
Analyse d'un transformateur monophasé
Réaliser l'analyse d'un transformateur monophasé (diagramme équivalent, calcul des pertes, rendement) permettra d'appliquer les concepts appris sur les transformateurs.
Show steps
  • Choisir un transformateur monophasé à analyser (réel ou fictif)
  • Dessiner le diagramme équivalent du transformateur
  • Calculer les pertes (cuivre, fer) et le rendement du transformateur
Volunteer at a local robotics or engineering club
Volunteer at a local robotics or engineering club to gain hands-on experience and connect with professionals in the field.
Show steps
  • Find a local robotics or engineering club that aligns with your interests.
  • Contact the club and inquire about volunteer opportunities.
  • Attend club meetings, participate in projects, and assist with events.
Conception d'un actionneur linéaire
Concevoir un actionneur linéaire (choix des matériaux, dimensionnement, modélisation) permettra d'intégrer les connaissances acquises sur la conversion électromécanique et la dynamique des systèmes.
Show steps
  • Définir les spécifications de l'actionneur linéaire (course, force, vitesse)
  • Choisir les matériaux pour l'aimant, le stator et le rotor
  • Dimensionner l'actionneur linéaire (géométrie, nombre de tours de bobinage)
  • Modéliser l'actionneur linéaire (forces électromagnétiques, dynamique)
  • Simuler le comportement de l'actionneur linéaire (réponse en fréquence, couple)
Build a simple electromechanical device
Build a simple electromechanical device to apply the concepts you have learned in the course and demonstrate your understanding.
Show steps
  • Choose a simple electromechanical device to build, such as a solenoid or a motor.
  • Gather the necessary materials and components.
  • Follow instructions or design your own circuit to build the device.
  • Test the device and troubleshoot any issues.
Explore online tutorials on advanced topics
Explore online tutorials on advanced topics related to the course to deepen your knowledge and expand your skills.
Show steps
  • Identify advanced topics that you are interested in or that are relevant to your career goals.
  • Search for online tutorials or courses on these topics.
  • Follow the tutorials step-by-step and complete any exercises or assignments.
Attend industry conferences or workshops
Attend industry conferences or workshops to learn about the latest advancements in the field and network with professionals.
Show steps
  • Research industry conferences or workshops related to the course topics.
  • Register for the events and attend the sessions that align with your interests.
  • Take notes, ask questions, and connect with speakers and attendees.

Career center

Learners who complete Conversion électromécanique I will develop knowledge and skills that may be useful to these careers:
Electric Vehicle Design Engineer
An Electric Vehicle Design Engineer designs and develops electric vehicles, including motorcycles, cars, buses, and trucks. They work on a variety of aspects of electric vehicle design, including powertrain design, battery design, and vehicle dynamics. In order to succeed in this role, it is important to have a strong understanding of the principles of electromechanical conversion. This course can help you to develop this understanding and build a foundation for a successful career as an Electric Vehicle Design Engineer.
Electrical Engineer
An Electrical Engineer designs, develops, and tests electrical systems and components. They work on a variety of projects, including power generation, distribution, and utilization. In order to succeed in this role, it is important to have a strong understanding of the principles of electromechanical conversion. This course can help you to develop this understanding and build a foundation for a successful career as an Electrical Engineer.
Renewable Energy Engineer
A Renewable Energy Engineer designs, develops, and tests renewable energy systems. They work on a variety of projects, including solar photovoltaic systems, wind turbines, and geothermal systems. In order to succeed in this role, it is important to have a strong understanding of the principles of electromechanical conversion. This course can help you to develop this understanding and build a foundation for a successful career as a Renewable Energy Engineer.
Systems Engineer
A Systems Engineer designs, develops, and tests systems that are composed of multiple components. They work on a variety of projects, including aircraft, spacecraft, and medical devices. In order to succeed in this role, it is important to have a strong understanding of the principles of electromechanical conversion. This course can help you to develop this understanding and build a foundation for a successful career as a Systems Engineer.
Test Engineer
A Test Engineer tests electrical and electronic systems and components. They work on a variety of projects, including power generation, distribution, and utilization. In order to succeed in this role, it is important to have a strong understanding of the principles of electromechanical conversion. This course can help you to develop this understanding and build a foundation for a successful career as a Test Engineer.
Power Electronics Engineer
A Power Electronics Engineer designs, develops, and tests power electronic systems. They work on a variety of projects, including power converters, inverters, and motor drives. In order to succeed in this role, it is important to have a strong understanding of the principles of electromechanical conversion. This course can help you to develop this understanding and build a foundation for a successful career as a Power Electronics Engineer.
Mechatronics Engineer
A Mechatronics Engineer designs, develops, and tests systems that combine mechanical, electrical, and computer engineering. They work on a variety of projects, including robotics, automation, and medical devices. In order to succeed in this role, it is important to have a strong understanding of the principles of electromechanical conversion. This course can help you to develop this understanding and build a foundation for a successful career as a Mechatronics Engineer.
Transformer Designer
A Transformer Designer designs and develops transformers. They work on a variety of projects, including power generation, distribution, and utilization. In order to succeed in this role, it is important to have a strong understanding of the principles of electromechanical conversion. This course can help you to develop this understanding and build a foundation for a successful career as a Transformer Designer.
Electric Motor Designer
An Electric Motor Designer designs and develops electric motors. They work on a variety of projects, including electric vehicles, industrial machinery, and medical devices. In order to succeed in this role, it is important to have a strong understanding of the principles of electromechanical conversion. This course can help you to develop this understanding and build a foundation for a successful career as an Electric Motor Designer.
Magnetic Materials Engineer
A Magnetic Materials Engineer develops magnetic materials, such as permanent magnets and soft magnetic materials. They work on a variety of projects, including electric motors, transformers, and medical devices. In order to succeed in this role, it is important to have a strong understanding of the principles of electromechanical conversion. This course can help you to develop this understanding and build a foundation for a successful career as a Magnetic Materials Engineer.
Actuator Engineer
An Actuator Engineer designs and develops actuators. They work on a variety of projects, including robotics, automation, and medical devices. In order to succeed in this role, it is important to have a strong understanding of the principles of electromechanical conversion. This course can help you to develop this understanding and build a foundation for a successful career as an Actuator Engineer.
Energy Storage Engineer
An Energy Storage Engineer designs and develops energy storage systems. They work on a variety of projects, including batteries, fuel cells, and flywheels. In order to succeed in this role, it is important to have a strong understanding of the principles of electromechanical conversion. This course can help you to develop this understanding and build a foundation for a successful career as an Energy Storage Engineer.
Automotive Engineer
An Automotive Engineer designs and develops automobiles. They work on a variety of projects, including powertrains, suspensions, and brakes. In order to succeed in this role, it is important to have a strong understanding of the principles of electromechanical conversion. This course can help you to develop this understanding and build a foundation for a successful career as an Automotive Engineer.
Biomedical Engineer
A Biomedical Engineer designs and develops medical devices. They work on a variety of projects, including pacemakers, artificial hearts, and prosthetics. In order to succeed in this role, it is important to have a strong understanding of the principles of electromechanical conversion. This course can help you to develop this understanding and build a foundation for a successful career as a Biomedical Engineer.
Robotics Engineer
A Robotics Engineer designs and develops robots. They work on a variety of projects, including industrial robots, medical robots, and military robots. In order to succeed in this role, it is important to have a strong understanding of the principles of electromechanical conversion. This course can help you to develop this understanding and build a foundation for a successful career as a Robotics Engineer.

Reading list

We've selected nine books that we think will supplement your learning. Use these to develop background knowledge, enrich your coursework, and gain a deeper understanding of the topics covered in Conversion électromécanique I.
Ce livre offre une introduction complète aux machines électriques et aux transformateurs, fournissant une base solide pour la compréhension des concepts abordés dans le cours.
Ce livre couvre les entraînements électriques, fournissant une perspective complémentaire sur les actionneurs abordés dans le cours.
Ce livre couvre les principes fondamentaux de l'électromagnétisme, fournissant une base solide pour la compréhension des concepts abordés dans le cours.
Ce livre fournit une base solide en modélisation pour le contrôle, utile pour la compréhension du module Systèmes dynamiques du cours.
Ce livre couvre des sujets connexes à ceux du cours, notamment les transformateurs monophasés, les circuits magnétiques et la conversion électromécanique. Il offre une perspective complémentaire et des exemples supplémentaires.
Ce livre couvre les entraînements de machines électriques, fournissant une perspective complémentaire sur les actionneurs abordés dans le cours.
Bien que ce livre se concentre sur les systèmes non linéaires, il fournit une base solide en théorie des systèmes, utile pour la compréhension du module Systèmes dynamiques du cours.
Bien que ce livre ne couvre pas directement les mêmes sujets que le cours, il fournit une base solide en électronique de puissance, ce qui est essentiel pour la compréhension des actionneurs et des systèmes électromécaniques.

Share

Help others find this course page by sharing it with your friends and followers:

Similar courses

Here are nine courses similar to Conversion électromécanique I.
Conversion électromécanique II
Most relevant
Les coulisses des systèmes de recommandation
Most relevant
Introduction à l'éthique de l’IA
Most relevant
Electrotechnique II
Most relevant
Elastic Cloud Infrastructure: Containers and Services en...
Most relevant
Cours intensif sur la science des données
Most relevant
Planification et Design de Systèmes et Technologies...
Most relevant
Production Machine Learning Systems - Français
Most relevant
Contaminants émergents : PFAS, algues bleu-vert et métaux
Most relevant
Our mission

OpenCourser helps millions of learners each year. People visit us to learn workspace skills, ace their exams, and nurture their curiosity.

Our extensive catalog contains over 50,000 courses and twice as many books. Browse by search, by topic, or even by career interests. We'll match you to the right resources quickly.

Find this site helpful? Tell a friend about us.

Affiliate disclosure

We're supported by our community of learners. When you purchase or subscribe to courses and programs or purchase books, we may earn a commission from our partners.

Your purchases help us maintain our catalog and keep our servers humming without ads.

Thank you for supporting OpenCourser.

© 2016 - 2024 OpenCourser