We may earn an affiliate commission when you visit our partners.
Course image
Katya Rodríguez Vázquez

La computación evolutiva (evolutionary computation, EC), aplica la teoría de la evolución natural y la genética en la adaptación evolutiva de estructuras computacionales, proporcionando un medio alternativo para atacar problemas complejos en diversas áreas, como la ingeniería, economía, química, medicina y, porque no, las artes. Una población de posibles soluciones de un problema dado es análoga a una población de organismos vivos que evolucionan cada generación, al recombinar los mejores individuos de la población y transmitir sus características de dichos individuos padres, a sus descendientes. En este campo, diferentes esquemas de métodos evolutivos se han desarrollado, los cuales difieren en el tipo de estructuras que conforman la población.

Read more

La computación evolutiva (evolutionary computation, EC), aplica la teoría de la evolución natural y la genética en la adaptación evolutiva de estructuras computacionales, proporcionando un medio alternativo para atacar problemas complejos en diversas áreas, como la ingeniería, economía, química, medicina y, porque no, las artes. Una población de posibles soluciones de un problema dado es análoga a una población de organismos vivos que evolucionan cada generación, al recombinar los mejores individuos de la población y transmitir sus características de dichos individuos padres, a sus descendientes. En este campo, diferentes esquemas de métodos evolutivos se han desarrollado, los cuales difieren en el tipo de estructuras que conforman la población.

Algoritmos evolutivos (AE), como también se le conoce al cómputo evolutivo (EC), se definen como métodos de optimización y búsqueda, los cuales están inspirados y tratan de imitar de manera parcial los procesos de la evolución natural, y mantienen una población de estructuras que evolucionan de acuerdo a reglas de selección y otros operadores genéticos, como cruzamiento y mutación (Bäck, 1996).

Los algoritmos evolutivos no son los únicos métodos de optimización propuestos a partir de sistemas biológicos. Se tiene una variedad de algoritmos de optimización, que tratan de imitar el comportamiento de sistemas naturales, como las colonias de hormigas, algoritmos culturales y optimización por cúmulos de partículas, entre otros. De aquí surge lo que se conoce como algoritmos bioinspirados, ya que toman sus bases a partir de la estructura de procesos y sistemas biológicos: la evolución, la selección natural, comportamiento social de animales, como las hormigas, abejas, peces.

BÄCK, T. (1996) Evolutionary Algorithms in Theory and Practice. Oxford University Press. DARWIN, C. (1859) On the Origin of Species by Means of Natural Selection, or the Preservation of Favoured Races in the Struggle for Life, John Murray.

Enroll now

What's inside

Syllabus

Introducción a la computación evolutiva
En este módulo conocerás cómo y por qué funcionan los algoritmos evolutivos, para resolver problemas de optimización y búsqueda.
Read more
Principios de operación de un algoritmo genético
En este módulo aprenderás a formular, plantear e identificar las variables de decisión de un problema dado (no importando el dominio), para poderlo resolver con el uso de un algoritmo evolutivo.
Implementación de un algoritmo genético básico
En este módulo identificarás cada una de las partes que conforman un algoritmo evolutivo, lo cual tendrá como consecuencia su implementación adecuada.
Aplicaciones de algoritmos genéticos y otras técnicas evolutivas
En este módulo aprenderás que los algoritmos evolutivos no son las únicas metaheurísticas para resolver problemas de optimización y búsqueda, sino que existen otras propuestas, como los algoritmos de optimización por cúmulo de partículas y la evolución diferencial.

Good to know

Know what's good
, what to watch for
, and possible dealbreakers
Explora la genética y la teoría de la evolución que se utilizan en estructuras computacionales
Cada generación evoluciona y mejora a través de la recombinación y mutación
Los algoritmos evolutivos no son los únicos métodos, también existen otras propuestas como los algoritmos de optimización por cúmulo de partículas

Save this course

Save Cómputo evolutivo to your list so you can find it easily later:
Save

Reviews summary

Cómputo evolutivo: curso satisfactory

Overall, reviews for this course are positive with many users giving it a perfect rating of 5 out of 5 stars. Students recommend this course and describe it as interesting, well-taught, and offering a unique perspective on problem-solving. However, some students have concerns about the methodology of evaluations.
Concepts are explained clearly.
"La explicacion esta bien"
This course is satisfactory overall.
"BUEN CURSO"
Interesting and engaging material.
"Interesante y bien llevado"
Assignments can be challenging.
"Es casi imposible hacer las tareas por que no hay personas a quien calificarles."
Concerns about the evaluation process.
"E​so de las revisiones se vuelve un tormento..."
"la metodologia de las evaluaciones no me gusta mucho"

Activities

Be better prepared before your course. Deepen your understanding during and after it. Supplement your coursework and achieve mastery of the topics covered in Cómputo evolutivo with these activities:
Walkthrough of a simple genetic algorithm in Python or Java
Provides a simplified introduction to the fundamentals of genetic algorithms.
Browse courses on Genetic algorithms
Show steps
  • Review the basic concepts of genetic algorithms, such as population, selection, crossover, and mutation.
  • Implement a simple genetic algorithm in Python or Java to solve a basic optimization problem.
Practice solving optimization problems using genetic algorithms
Strengthens understanding of genetic algorithms and their application in solving optimization problems.
Browse courses on Genetic algorithms
Show steps
  • Identify a simple optimization problem to solve using genetic algorithms.
  • Implement a genetic algorithm to solve the problem and analyze the results.
  • Experiment with different genetic algorithm parameters, such as population size and mutation rate, to optimize performance.
Create a visual representation of the evolutionary process in a genetic algorithm
Enhances visualization and understanding of the evolutionary dynamics in genetic algorithms.
Browse courses on Genetic algorithms
Show steps
  • Develop a visual representation technique to illustrate the changes in the population over generations.
  • Apply the technique to visualize the evolutionary process of a genetic algorithm solving a specific problem.
  • Analyze the visualizations to identify patterns and gain insights into the algorithm's behavior.
Show all three activities

Career center

Learners who complete Cómputo evolutivo will develop knowledge and skills that may be useful to these careers:
Data Scientist
Data Scientists collect, analyze, and interpret data to help businesses make informed decisions. They use their skills in statistics, mathematics, and computer science to extract meaningful insights from data. By studying Cómputo evolutivo, you gain the skills to analyze and interpret data more effectively, which is crucial for success as a Data Scientist.
Geneticist
Geneticists study genes and heredity. They use their knowledge to diagnose and treat genetic diseases, develop new drugs and therapies, and improve agricultural practices. By taking Cómputo evolutivo, you gain insights into how natural and genetic theories can be applied to genetic research, leading to new discoveries and advancements in the field of genetics.
Software Developer
Software Developers design, develop, and maintain software applications. They use their knowledge of programming languages and software development tools to create software that meets the needs of users. By studying Cómputo evolutivo, you gain insights into how natural and genetic theories can be applied to software development, leading to more efficient and effective software.
Machine Learning Engineer
Machine Learning Engineers design, develop, and maintain machine learning models. They use their knowledge of machine learning algorithms and data analysis to create models that can learn from data and make predictions. By studying Cómputo evolutivo, you gain insights into how natural and genetic theories can be applied to machine learning models, leading to more accurate and efficient models.
Computer Scientist
Computer Scientists invent and design software and hardware for computers. They analyze user needs and develop solutions to meet those needs. By taking Cómputo evolutivo, you gain insights into how to develop software using natural theories and genetic makeup. This course provides a foundation and improves your perspective on how to create efficient software.
Operations Research Analyst
Operations Research Analysts use mathematical and analytical techniques to solve problems in a wide range of industries, including manufacturing, transportation, and healthcare. They use their skills to improve efficiency and productivity. By taking Cómputo evolutivo, you gain insights into how natural and genetic theories can be applied to operations research models, leading to more efficient and effective solutions.
Biologist
As a Biologist, you study living organisms. Your research could include studying the behavior of animals, the chemical composition of plants, or the evolution of species. By studying Cómputo evolutivo, which uses natural and genetic theories to adapt computational structures, you can understand the evolution of species better and gain insights into the genetic makeup of plants and animals.
Statistician
Statisticians collect, analyze, and interpret data to help businesses and organizations make informed decisions. They use their knowledge of statistics and data analysis to identify trends and patterns in data. By taking Cómputo evolutivo, you gain insights into how natural and genetic theories can be applied to statistical models, leading to more accurate and reliable data analysis.
Zoologist
Zoologists study animals and their behavior. They use their knowledge of zoology to conduct research, develop conservation programs, and educate the public about animals. By taking Cómputo evolutivo, you gain insights into how natural and genetic theories can be applied to zoological research, leading to new discoveries and advancements in the field of zoology.
Physician
Physicians diagnose and treat diseases and injuries. They use their knowledge of medicine and surgery to provide care to patients. By studying Cómputo evolutivo, you gain insights into how natural and genetic theories can be applied to medical research and practice, leading to new discoveries and advancements in the field of medicine.
Mathematician
Mathematicians study the properties of numbers, shapes, and other mathematical objects. They use their knowledge of mathematics to solve problems in a wide range of fields, including science, engineering, and finance. Cómputo evolutivo may be useful to Mathematicians as it provides insights into how natural and genetic theories can be applied to mathematical models, leading to new discoveries and advancements in the field of mathematics.
Engineer
Engineers design, build, and maintain machines, structures, and systems. They use their knowledge of math, science, and engineering principles to solve problems and create new technologies. Cómputo evolutivo may be useful to Engineers as it provides insights into how natural and genetic theories can be applied to engineering models and designs, leading to more efficient and effective solutions.
Economist
Economists study the production, distribution, and consumption of goods and services. They use their knowledge of economic principles to advise businesses and governments on how to make decisions that will improve the economy. Cómputo evolutivo may be useful to Economists as it provides insights into how natural theories and genetic makeup can be applied to economic models, leading to more accurate predictions and better economic decision-making.
Teacher
Teachers educate students in a variety of subjects, including math, science, and social studies. They use their knowledge of teaching methods and curriculum to create lesson plans and deliver instruction. Cómputo evolutivo may be useful to Teachers as it provides insights into how natural and genetic theories can be applied to teaching methods, leading to more effective and engaging lessons.
Physicist
Physicists study the laws of nature and the universe. They use their knowledge of physics to develop new technologies and solve problems in a wide range of fields, including energy, transportation, and medicine. Cómputo evolutivo may be useful to Physicists as it provides insights into how natural and genetic theories can be applied to physical models, leading to new discoveries and advancements in the field of physics.

Reading list

We've selected 12 books that we think will supplement your learning. Use these to develop background knowledge, enrich your coursework, and gain a deeper understanding of the topics covered in Cómputo evolutivo.
Provides a comprehensive overview of bio-inspired computational intelligence, covering a wide range of techniques and applications. It valuable resource for researchers and practitioners interested in the latest advancements in this field.
Introduces genetic programming, a powerful evolutionary computation technique for automated problem-solving. It must-read for those interested in exploring the frontiers of evolutionary computation and artificial intelligence.
This comprehensive textbook provides an in-depth overview of evolutionary computation, including genetic algorithms, evolutionary strategies, and genetic programming. It valuable resource for both beginners and experienced practitioners.
Este libro proporciona una base teórica sólida para los algoritmos evolutivos, cubriendo temas como la representación, la selección, la recombinación y la mutación. Es una lectura esencial para cualquiera que quiera comprender los fundamentos de los algoritmos evolutivos.
This seminal work by one of the pioneers of genetic algorithms provides a foundational understanding of the field. It is essential reading for anyone interested in the historical development and theoretical underpinnings of evolutionary computation.
Offers a comprehensive overview of metaheuristics, a class of optimization algorithms that includes evolutionary computation. It provides a theoretical foundation and practical guidance for researchers and practitioners in the field.
Explores the intersection of evolutionary computation and machine learning. It provides a comprehensive overview of techniques for evolving machine learning models, offering valuable insights for practitioners in both fields.
Offers a comprehensive exploration of nature-inspired computation, covering a wide range of algorithms and applications. It provides valuable insights for researchers and practitioners seeking to harness the power of nature for solving complex problems.
Introduces particle swarm optimization, a widely used metaheuristic algorithm inspired by the social behavior of birds and fish. It useful reference for those seeking to understand and apply this technique in various domains.
Explores evolutionary computation techniques for solving multi-objective optimization problems. It valuable reference for those dealing with complex decision-making scenarios involving multiple conflicting objectives.
Provides a comprehensive overview of differential evolution, a powerful evolutionary algorithm for continuous optimization problems. It valuable resource for researchers and practitioners in the field.
Explores ant colony optimization, a powerful metaheuristic inspired by the behavior of ants. It valuable resource for those interested in applying evolutionary computation techniques to complex optimization problems.

Share

Help others find this course page by sharing it with your friends and followers:

Similar courses

Here are nine courses similar to Cómputo evolutivo.
Costos para los Negocios
Most relevant
Fisioterapia en el cáncer infantil
Most relevant
Programación en Python II: aprendiendo a estructurar datos
Most relevant
Introducción a la programación en Java: estructuras de...
Most relevant
Introducción a la visión por computador: desarrollo de...
Most relevant
Sistemas agrosilvopastoriles: una alternativa...
Most relevant
Astronomía Virtual
Most relevant
Seguridad informática: defensa contra las artes oscuras...
Most relevant
Innovación legal: desarrollo de la abogacía 2.0
Most relevant
Our mission

OpenCourser helps millions of learners each year. People visit us to learn workspace skills, ace their exams, and nurture their curiosity.

Our extensive catalog contains over 50,000 courses and twice as many books. Browse by search, by topic, or even by career interests. We'll match you to the right resources quickly.

Find this site helpful? Tell a friend about us.

Affiliate disclosure

We're supported by our community of learners. When you purchase or subscribe to courses and programs or purchase books, we may earn a commission from our partners.

Your purchases help us maintain our catalog and keep our servers humming without ads.

Thank you for supporting OpenCourser.

© 2016 - 2024 OpenCourser