La computación evolutiva (evolutionary computation, EC), aplica la teoría de la evolución natural y la genética en la adaptación evolutiva de estructuras computacionales, proporcionando un medio alternativo para atacar problemas complejos en diversas áreas, como la ingeniería, economía, química, medicina y, porque no, las artes. Una población de posibles soluciones de un problema dado es análoga a una población de organismos vivos que evolucionan cada generación, al recombinar los mejores individuos de la población y transmitir sus características de dichos individuos padres, a sus descendientes. En este campo, diferentes esquemas de métodos evolutivos se han desarrollado, los cuales difieren en el tipo de estructuras que conforman la población.
La computación evolutiva (evolutionary computation, EC), aplica la teoría de la evolución natural y la genética en la adaptación evolutiva de estructuras computacionales, proporcionando un medio alternativo para atacar problemas complejos en diversas áreas, como la ingeniería, economía, química, medicina y, porque no, las artes. Una población de posibles soluciones de un problema dado es análoga a una población de organismos vivos que evolucionan cada generación, al recombinar los mejores individuos de la población y transmitir sus características de dichos individuos padres, a sus descendientes. En este campo, diferentes esquemas de métodos evolutivos se han desarrollado, los cuales difieren en el tipo de estructuras que conforman la población.
Algoritmos evolutivos (AE), como también se le conoce al cómputo evolutivo (EC), se definen como métodos de optimización y búsqueda, los cuales están inspirados y tratan de imitar de manera parcial los procesos de la evolución natural, y mantienen una población de estructuras que evolucionan de acuerdo a reglas de selección y otros operadores genéticos, como cruzamiento y mutación (Bäck, 1996).
Los algoritmos evolutivos no son los únicos métodos de optimización propuestos a partir de sistemas biológicos. Se tiene una variedad de algoritmos de optimización, que tratan de imitar el comportamiento de sistemas naturales, como las colonias de hormigas, algoritmos culturales y optimización por cúmulos de partículas, entre otros. De aquí surge lo que se conoce como algoritmos bioinspirados, ya que toman sus bases a partir de la estructura de procesos y sistemas biológicos: la evolución, la selección natural, comportamiento social de animales, como las hormigas, abejas, peces.
BÄCK, T. (1996) Evolutionary Algorithms in Theory and Practice. Oxford University Press. DARWIN, C. (1859) On the Origin of Species by Means of Natural Selection, or the Preservation of Favoured Races in the Struggle for Life, John Murray.
OpenCourser helps millions of learners each year. People visit us to learn workspace skills, ace their exams, and nurture their curiosity.
Our extensive catalog contains over 50,000 courses and twice as many books. Browse by search, by topic, or even by career interests. We'll match you to the right resources quickly.
Find this site helpful? Tell a friend about us.
We're supported by our community of learners. When you purchase or subscribe to courses and programs or purchase books, we may earn a commission from our partners.
Your purchases help us maintain our catalog and keep our servers humming without ads.
Thank you for supporting OpenCourser.