We may earn an affiliate commission when you visit our partners.
Course image
Alexander Caicedo Dorado

En este curso abordaremos el aprendizaje automático de máquinas desde una perspectiva algebraica. Se abordarán cuatro temas, el primero de ellos será una introducción a los modelos de regresión y clasificación lineal, comenzando por la regresión lineal multivariada, sus aplicaciones y cómo evitar el sobre-ajuste utilizando regularización. Luego de esto introduciremos la regresión logística como uno de los métodos de clasificación más relevantes.

Read more

En este curso abordaremos el aprendizaje automático de máquinas desde una perspectiva algebraica. Se abordarán cuatro temas, el primero de ellos será una introducción a los modelos de regresión y clasificación lineal, comenzando por la regresión lineal multivariada, sus aplicaciones y cómo evitar el sobre-ajuste utilizando regularización. Luego de esto introduciremos la regresión logística como uno de los métodos de clasificación más relevantes.

La regresión logística nos permitirá realizar una conexión con la formulación de la arquitectura de una red neuronal artificial, ya que la neurona logística, la cual puede interpretarse como la unidad básica para el desarrollo de modelos de clasificación con redes neuronales, es el equivalente a una regresión logística.

El tercer tema se enfoca en el estudio de diferentes metodologías utilizadas para el correcto entrenamiento de redes neuronales, tanto para regresión como clasificación, así mismo se introducirán algunos métodos utilizados para identificar los modelos que tienen el mejor rendimiento.

Finalmente, se describirán diferentes métodos para el aprendizaje no supervisado. Específicamente se abordará PCA para la reducción de dimensionalidad y k-means para el desarrollo de modelos de agrupamiento. También se describirán algunas técnicas utilizadas para poder evaluar el rendimiento de estos modelos. Además, el curso abordará el uso de redes neuronales para el desarrollo de modelos de aprendizaje no supervisado, específicamente se explicarán las Redes de Hopfield que permiten el almacenamiento de patrones en la arquitectura de su red, mediante el uso de memoria asociativa; y los mapas autoorganizados o redes de Kohonen que permite identificar estructuras en los datos de entrenamiento y que pueden utilizarse para la reducción de dimensionalidad.

What you'll learn

  1. Definir las diferencias entre aprendizaje supervisado y no supervisado.
  2. Describir lo que es un problema de regresión, sus principales características y sus aplicaciones.
  3. Describir lo que es un problema de clasificación, sus principales características y sus aplicaciones.
  4. Describir el origen de las redes neuronales artificiales y su desarrollo histórico.
  5. Explicar la arquitectura y el funcionamiento de la estructura de una red neuronal artificial feedforward.
  6. Implementar problemas de regresión y clasificación utilizando redes neuronales artificiales.
  7. Identificar el procedimiento adecuado para el entrenamiento de modelos utilizando redes neuronales artificiales, y algunos métodos existentes para identificar los modelos que tengan el mejor rendimiento.
  8. Identificar diferentes metodologías para el desarrollo de modelos de aprendizaje no supervisado.

What's inside

Learning objectives

  • Definir las diferencias entre aprendizaje supervisado y no supervisado.
  • Describir lo que es un problema de regresión, sus principales características y sus aplicaciones.
  • Describir lo que es un problema de clasificación, sus principales características y sus aplicaciones.
  • Describir el origen de las redes neuronales artificiales y su desarrollo histórico.
  • Explicar la arquitectura y el funcionamiento de la estructura de una red neuronal artificial feedforward.
  • Implementar problemas de regresión y clasificación utilizando redes neuronales artificiales.
  • Identificar el procedimiento adecuado para el entrenamiento de modelos utilizando redes neuronales artificiales, y algunos métodos existentes para identificar los modelos que tengan el mejor rendimiento.
  • Identificar diferentes metodologías para el desarrollo de modelos de aprendizaje no supervisado.

Syllabus

Módulo 1. Regresión lineal y regresión logística
● Inteligencia artificial
● Regresión lineal
● Regresión logística
Read more
Módulo 2. Redes neuronales artificiales (RNA)
● La neurona de McCullock-Pitts
● El perceptrón
● Redes neuronales
Módulo 3. Selección y evaluación de modelos
● Entrenamiento de redes neuronales (RN)
● Evaluación de modelos
● Aspectos clave para el entrenamiento de RN
Módulo 4. Aprendizaje no supervisado
● Métodos de agrupamiento

Good to know

Know what's good
, what to watch for
, and possible dealbreakers
Presenta conceptos fundamentales del aprendizaje automático, incluyendo regresión lineal, regresión logística y redes neuronales artificiales
Ofrece una introducción integral a las redes neuronales artificiales, cubriendo su arquitectura, funcionamiento y entrenamiento
Desarrolla habilidades prácticas para implementar problemas de regresión y clasificación utilizando redes neuronales artificiales
Explora métodos de aprendizaje no supervisado, como agrupamiento y reducción de dimensionalidad
Aborda conceptos avanzados como redes de Hopfield y mapas autoorganizados
Impartido por Alexander Caicedo Dorado, instructor reconocido en el campo del aprendizaje automático

Save this course

Save Introducción a Machine Learning to your list so you can find it easily later:
Save

Activities

Be better prepared before your course. Deepen your understanding during and after it. Supplement your coursework and achieve mastery of the topics covered in Introducción a Machine Learning with these activities:
Review Probability and Statistics
Contribute to your understanding of the theoretical foundations of machine learning.
Browse courses on Probability
Show steps
  • Review probability distributions, random variables, and statistical inference.
Solve Linear Algebra Problems
Strengthen your understanding of the mathematical concepts used in machine learning.
Browse courses on Linear Algebra
Show steps
  • Practice solving systems of linear equations.
  • Practice finding eigenvalues and eigenvectors of matrices.
  • Practice performing matrix decompositions, such as LU, QR, and SVD.
Revisar los conceptos básicos de Álgebra Lineal
Refrescar los conceptos básicos de Álgebra Lineal proporcionará una base sólida para comprender los modelos de regresión y clasificación lineal que se tratarán en el curso.
Browse courses on Matrices
Show steps
  • Revisar los conceptos de matrices
  • Practicar operaciones con matrices
  • Recordar el concepto de determinantes
13 other activities
Expand to see all activities and additional details
Show all 16 activities
Repasa los conceptos básicos de álgebra lineal
Fortalecer los conocimientos previos en álgebra lineal, esenciales para comprender los conceptos de aprendizaje automático.
Browse courses on Matrices
Show steps
  • Revisa los conceptos básicos de matrices, vectores y transformaciones lineales.
  • Resuelve problemas y completa ejercicios para reforzar el entendimiento.
Encontrar un mentor experimentado en aprendizaje automático
Encontrar un mentor experimentado en aprendizaje automático proporcionará orientación y apoyo para mejorar el aprendizaje y el crecimiento en el campo.
Show steps
  • Identificar posibles mentores
  • Contactar a los mentores potenciales
  • Establecer una relación de mentoría
Participa en sesiones de estudio en grupo
Colaborar con compañeros para mejorar la comprensión y reforzar los conceptos aprendidos.
Show steps
  • Forma un grupo de estudio con compañeros.
  • Revisa los materiales del curso y discute los conceptos clave.
  • Trabaja en conjunto para resolver problemas y proyectos.
  • Comparte conocimientos y aprende de las perspectivas de los demás.
Implement Regression and Classification Algorithms
Gain practical experience in applying machine learning techniques.
Browse courses on Regression
Show steps
  • Implement a linear regression model using gradient descent.
  • Implement a logistic regression model using maximum likelihood estimation.
  • Implement a decision tree classifier using the ID3 algorithm.
Explore Neural Network Architectures
Develop a deeper understanding of the different types of neural network architectures.
Browse courses on Neural Networks
Show steps
  • Study the architecture of feedforward neural networks.
  • Study the architecture of convolutional neural networks.
  • Study the architecture of recurrent neural networks.
Participa en discusiones grupales sobre redes neuronales
Intercambia ideas, comparte conocimientos y obtén comentarios sobre conceptos relacionados con redes neuronales.
Show steps
  • Encuentra grupos de estudio o foros de discusión
  • Participa activamente en discusiones
  • Presenta tus ideas y perspectivas
Seguir tutoriales sobre el funcionamiento de las redes neuronales
Seguir tutoriales sobre el funcionamiento de las redes neuronales ayudará a comprender la estructura y los principios detrás de estos modelos.
Show steps
  • Buscar tutoriales sobre redes neuronales
  • Seguir los tutoriales
  • Experimentar con diferentes arquitecturas de redes neuronales
Sigue tutoriales sobre entrenamiento de redes neuronales
Adquiere una comprensión más profunda del proceso de entrenamiento de redes neuronales y mejora tus habilidades prácticas.
Show steps
  • Identifica recursos tutoriales relevantes
  • Sigue tutoriales paso a paso
  • Implementa los conceptos aprendidos en proyectos prácticos
Desarrolla un modelo de red neuronal para un problema de regresión o clasificación
Aplica tus conocimientos sobre redes neuronales para construir un modelo personalizado que resuelva un problema del mundo real.
Show steps
  • Define el problema y recopila datos
  • Diseña y entrena la red neuronal
  • Evalúa el rendimiento del modelo
  • Optimiza el modelo según sea necesario
Desarrolla un modelo de aprendizaje no supervisado
Aplicar conocimientos sobre el aprendizaje no supervisado creando un modelo para una tarea específica.
Browse courses on PCA
Show steps
  • Selecciona un conjunto de datos y un problema de agrupamiento o reducción de dimensionalidad.
  • Explora diferentes métodos de aprendizaje no supervisado y selecciona el más adecuado.
  • Implementa y entrena el modelo utilizando técnicas de aprendizaje automático.
  • Evalúa el rendimiento del modelo y optimízalo según sea necesario.
Crear una presentación sobre los diferentes métodos de aprendizaje no supervisado
Crear una presentación sobre los diferentes métodos de aprendizaje no supervisado consolidará la comprensión de estos métodos y sus aplicaciones.
Browse courses on PCA
Show steps
  • Investigar diferentes métodos de aprendizaje no supervisado
  • Comparar y contrastar los métodos
  • Diseñar una presentación
  • Crear una presentación
Explorar tutoriales de redes neuronales avanzadas
Amplía tus conocimientos explorando tutoriales que cubran técnicas avanzadas de redes neuronales. Esto te permitirá profundizar tu comprensión y seguir los últimos avances en el campo.
Show steps
  • Identifica plataformas de aprendizaje en línea o canales de YouTube que ofrecen tutoriales de redes neuronales avanzadas
  • Selecciona tutoriales que coincidan con tus intereses y nivel de habilidad
  • Sigue los tutoriales paso a paso, implementa los conceptos y experimenta con diferentes parámetros
Contribuir con un proyecto de código abierto relacionado con el aprendizaje automático
Contribuir con un proyecto de código abierto relacionado con el aprendizaje automático proporcionará experiencia práctica y profundizará la comprensión de los conceptos cubiertos en el curso.
Show steps
  • Encontrar un proyecto de código abierto
  • Hacer contribuciones al proyecto
  • Interactuar con la comunidad de desarrollo

Career center

Learners who complete Introducción a Machine Learning will develop knowledge and skills that may be useful to these careers:
Machine Learning Engineer
Machine Learning Engineers build and maintain machine learning models. They use their knowledge of mathematics, statistics, and computer science to develop algorithms that can learn from data and make predictions. This course provides a strong foundation in the fundamentals of machine learning, including regression, classification, and neural networks. This knowledge is essential for anyone who wants to work as a Machine Learning Engineer.
Data Scientist
Data Scientists use their knowledge of statistics, mathematics, and computer science to analyze data and extract insights. They use this information to help businesses make better decisions. This course provides a strong foundation in the fundamentals of machine learning, including regression, classification, and neural networks. This knowledge is essential for anyone who wants to work as a Data Scientist.
Quantitative Analyst
Quantitative Analysts use their knowledge of mathematics, statistics, and computer science to develop models that can be used to make investment decisions. This course provides a strong foundation in the fundamentals of machine learning, including regression, classification, and neural networks. This knowledge is essential for anyone who wants to work as a Quantitative Analyst.
Software Engineer
Software Engineers design, develop, and maintain software applications. They use their knowledge of computer science to create software that meets the needs of users. This course provides a strong foundation in the fundamentals of machine learning, including regression, classification, and neural networks. This knowledge is increasingly important for Software Engineers, as machine learning is being used in more and more applications.
Operations Research Analyst
Operations Research Analysts use their knowledge of mathematics, statistics, and computer science to develop models that can be used to improve the efficiency of organizations. This course provides a strong foundation in the fundamentals of machine learning, including regression, classification, and neural networks. This knowledge is increasingly important for Operations Research Analysts, as machine learning is being used in more and more applications.
Actuary
Actuaries use their knowledge of mathematics, statistics, and computer science to assess and manage risk. This course provides a strong foundation in the fundamentals of machine learning, including regression, classification, and neural networks. This knowledge is increasingly important for Actuaries.
Market Researcher
Market Researchers use their knowledge of marketing and research to help businesses understand their customers. This course provides a strong foundation in the fundamentals of machine learning, including regression, classification, and neural networks. This knowledge is increasingly important for Market Researchers, as machine learning is being used in more and more applications.
Business Analyst
Business Analysts use their knowledge of business and technology to help organizations improve their performance. This course provides a strong foundation in the fundamentals of machine learning, including regression, classification, and neural networks. This knowledge is increasingly important for Business Analysts, as machine learning is being used in more and more applications.
Financial Analyst
Financial Analysts use their knowledge of finance and economics to help investors make informed decisions. This course provides a strong foundation in the fundamentals of machine learning, including regression, classification, and neural networks. This knowledge is increasingly important for Financial Analysts, as machine learning is being used in more and more applications.
Product Manager
Product Managers use their knowledge of business and technology to develop and launch new products. This course provides a strong foundation in the fundamentals of machine learning, including regression, classification, and neural networks. This knowledge is increasingly important for Product Managers, as machine learning is being used in more and more applications.
Risk Manager
Risk Managers use their knowledge of risk management and finance to help organizations identify and manage risks. This course provides a strong foundation in the fundamentals of machine learning, including regression, classification, and neural networks. This knowledge is increasingly important for Risk Managers, as machine learning is being used in more and more applications.
Data Analyst
Data Analysts use their knowledge of data analysis and statistics to help organizations make better decisions. This course provides a strong foundation in the fundamentals of machine learning, including regression, classification, and neural networks. This knowledge is increasingly important for Data Analysts, as machine learning is being used in more and more applications.
Statistician
Statisticians use their knowledge of statistics and mathematics to collect, analyze, and interpret data. This course provides a strong foundation in the fundamentals of machine learning, including regression, classification, and neural networks. This knowledge is essential for anyone who wants to work as a Statistician.
Web Developer
Web Developers design, develop, and maintain websites. They use their knowledge of web development technologies to create websites that meet the needs of users. This course provides a strong foundation in the fundamentals of machine learning, including regression, classification, and neural networks. This knowledge is increasingly important for Web Developers, as machine learning is being used in more and more web applications.
Software Developer
Software Developers design, develop, and maintain software applications. They use their knowledge of computer science to create software that meets the needs of users. This course provides a strong foundation in the fundamentals of machine learning, including regression, classification, and neural networks. This knowledge is increasingly important for Software Developers, as machine learning is being used in more and more applications.

Reading list

We've selected nine books that we think will supplement your learning. Use these to develop background knowledge, enrich your coursework, and gain a deeper understanding of the topics covered in Introducción a Machine Learning.
Classic textbook on machine learning. It covers a wide range of topics, from supervised learning to unsupervised learning to reinforcement learning. It great resource for those who want to learn the fundamentals of machine learning.
Comprehensive guide to deep learning. It covers a wide range of topics, from the basics of deep learning to advanced techniques such as generative adversarial networks. It great resource for those who want to learn more about deep learning.
Classic textbook on reinforcement learning. It covers a wide range of topics, from the basics of reinforcement learning to advanced techniques such as deep reinforcement learning. It great resource for those who want to learn more about reinforcement learning.
Practical guide to machine learning. It covers a wide range of topics, from data preprocessing to model evaluation. It great resource for those who want to learn how to use machine learning in practice.
Este libro ofrece una introducción accesible al aprendizaje automático, sin requerir conocimientos previos en el área. Explica conceptos complejos de una manera sencilla y proporciona ejemplos prácticos para ilustrar su aplicación. Es un recurso útil para aquellos que buscan comprender los fundamentos del aprendizaje automático sin sumergirse en detalles técnicos.
Practical guide to machine learning using Python. It covers a wide range of topics, from data preprocessing to model evaluation. It great resource for those who want to learn how to use machine learning in practice.
Practical guide to machine learning using Python. It covers a wide range of topics, from data preprocessing to model evaluation. It great resource for those who want to learn how to use machine learning in practice.
Gentle introduction to machine learning. It covers a wide range of topics, from the basics of machine learning to advanced techniques such as deep learning. It great resource for those who want to learn more about machine learning without getting bogged down in the technical details.

Share

Help others find this course page by sharing it with your friends and followers:

Similar courses

Here are nine courses similar to Introducción a Machine Learning.
Modelos predictivos con Machine Learning
Most relevant
Aprendizaje Automático con Python
Most relevant
Visión artificial contemporánea
Most relevant
Introducción al deep learning contemporáneo
Most relevant
Big Data: procesamiento y análisis
Most relevant
Deep Learning: redes neuronales y aprendizaje profundo
Most relevant
Modelos predictivos con aprendizaje automático
Most relevant
Analítica financiera​
Most relevant
IA para todos: domina los conceptos básicos
Most relevant
Our mission

OpenCourser helps millions of learners each year. People visit us to learn workspace skills, ace their exams, and nurture their curiosity.

Our extensive catalog contains over 50,000 courses and twice as many books. Browse by search, by topic, or even by career interests. We'll match you to the right resources quickly.

Find this site helpful? Tell a friend about us.

Affiliate disclosure

We're supported by our community of learners. When you purchase or subscribe to courses and programs or purchase books, we may earn a commission from our partners.

Your purchases help us maintain our catalog and keep our servers humming without ads.

Thank you for supporting OpenCourser.

© 2016 - 2024 OpenCourser