Ever wonder how Netflix decides what movies to recommend for you? Or how Amazon recommends books? We can get a feel for how it works by building a simplified recommender of our own!
Ever wonder how Netflix decides what movies to recommend for you? Or how Amazon recommends books? We can get a feel for how it works by building a simplified recommender of our own!
In this capstone, you will show off your problem solving and Java programming skills by creating recommender systems. You will work with data for movies, including ratings, but the principles involved can easily be adapted to books, restaurants, and more. You will write a program to answer questions about the data, including which items should be recommended to a user based on their ratings of several movies. Given input files on users ratings and movie titles, you will be able to:
1. Read in and parse data into lists and maps;
2. Calculate average ratings;
3. Calculate how similar a given rater is to another user based on ratings; and
4. Recommend movies to a given user based on ratings.
5. Display recommended movies for a given user on a webpage.
OpenCourser helps millions of learners each year. People visit us to learn workspace skills, ace their exams, and nurture their curiosity.
Our extensive catalog contains over 50,000 courses and twice as many books. Browse by search, by topic, or even by career interests. We'll match you to the right resources quickly.
Find this site helpful? Tell a friend about us.
We're supported by our community of learners. When you purchase or subscribe to courses and programs or purchase books, we may earn a commission from our partners.
Your purchases help us maintain our catalog and keep our servers humming without ads.
Thank you for supporting OpenCourser.