In this guided project, you will learn how to import textual data stored in raw text files into R, turn these files into a corpus (a collection of textual documents), and tokenize the text all using the R software package quanteda. You will then learn how to check for words with positive or negative sentiment within the text, and how to plot the proportion of use for these words over time, while stratifying by a third variable. You will also learn how to carry out a targeted sentiment analysis by looking for words with a positive or negative sentiment that are adjacent to relevant keywords or phrases, and how to compare the results of a targeted sentiment analysis with the results of a generic analysis.
OpenCourser helps millions of learners each year. People visit us to learn workspace skills, ace their exams, and nurture their curiosity.
Our extensive catalog contains over 50,000 courses and twice as many books. Browse by search, by topic, or even by career interests. We'll match you to the right resources quickly.
Find this site helpful? Tell a friend about us.
We're supported by our community of learners. When you purchase or subscribe to courses and programs or purchase books, we may earn a commission from our partners.
Your purchases help us maintain our catalog and keep our servers humming without ads.
Thank you for supporting OpenCourser.