Concern about the harmful effects of machine learning algorithms and big data AI models (bias and more) has resulted in greater attention to the fundamentals of data ethics. News stories appear regularly about credit algorithms that discriminate against women, medical algorithms that discriminate against African Americans, hiring algorithms that base decisions on gender, and more. In most cases, the data scientists who developed and deployed these decision making algorithms and data processes had no such intentions, and were unaware of the harmful impact of their work.
Concern about the harmful effects of machine learning algorithms and big data AI models (bias and more) has resulted in greater attention to the fundamentals of data ethics. News stories appear regularly about credit algorithms that discriminate against women, medical algorithms that discriminate against African Americans, hiring algorithms that base decisions on gender, and more. In most cases, the data scientists who developed and deployed these decision making algorithms and data processes had no such intentions, and were unaware of the harmful impact of their work.
This data science ethics course, the second in the data science ethics program for both practitioners and managers, provides guidance and practical tools to build better models, do better data analysis and avoid these problems. You’ll learn about ****
Tools for model interpretability
Global versus local model interpretability methods
Metrics for model fairness
Auditing your model for bias and fairness
Remedies for biased models
The course offers real world problems and datasets, a framework data scientists can use to develop their projects, and an audit process to follow in reviewing them. Case studies with ethical considerations, along with Python code, are provided.
How to explain the average contribution of features to predictions and the contribution of individual feature values to individual predictions
How to Assess the performance of models with metrics to measure bias and unfairness
How to describe potential ethical issues that can arise with image and text data, and how to address them
How to donduct an audit of a data science project from an ethical standpoint to identify possible harms and potential areas for bias mitigation or harm reduction
In this course we will mostly be addressing things the data scientist can do to ensure that their projects and solutions are designed and implemented responsibly. We will primarily focus on issues of bias and unfairness across protected groups.
OpenCourser helps millions of learners each year. People visit us to learn workspace skills, ace their exams, and nurture their curiosity.
Our extensive catalog contains over 50,000 courses and twice as many books. Browse by search, by topic, or even by career interests. We'll match you to the right resources quickly.
Find this site helpful? Tell a friend about us.
We're supported by our community of learners. When you purchase or subscribe to courses and programs or purchase books, we may earn a commission from our partners.
Your purchases help us maintain our catalog and keep our servers humming without ads.
Thank you for supporting OpenCourser.