We may earn an affiliate commission when you visit our partners.
Course image
Donna Testerman, Claude Marion, and Mikaël Cavallin

Vous voulez apprendre l'algèbre linéaire, un précieux outil complémentaire à vos connaissances acquises durant vos études en économie, ingénierie, physique, ou statistique? Ou simplement pour la beauté de la matière? Alors ce cours est fait pour vous! Outre remplir le rôle d'outil dans les différentes branches mentionnées ci-dessus (permettant la résolution de problèmes concrets), l'algèbre linéaire, qui capture l'essence des mathématiques -à savoir, l'algèbre et la géométrie- vous introduira au monde plus abstrait des mathématiques.

Read more

Vous voulez apprendre l'algèbre linéaire, un précieux outil complémentaire à vos connaissances acquises durant vos études en économie, ingénierie, physique, ou statistique? Ou simplement pour la beauté de la matière? Alors ce cours est fait pour vous! Outre remplir le rôle d'outil dans les différentes branches mentionnées ci-dessus (permettant la résolution de problèmes concrets), l'algèbre linéaire, qui capture l'essence des mathématiques -à savoir, l'algèbre et la géométrie- vous introduira au monde plus abstrait des mathématiques.

Proposé comme complément de cours aux ingénieurs de première année à l'Ecole Polytechnique Fédérale de Lausanne, ce MOOC (composé de trois parties) n'en est pas moins un cours à part entière et peut être considéré comme une base solide d'algèbre linéaire pour tout étudiant intéressé par l'apprentissage de cette matière.

Bien que les vidéos constituent le coeur du cours, des exercices de type QCM (Questions à choix multiples) ainsi que des séries au format PDF seront disponibles chaque semaine, ainsi que des corrigés appropriés. Plus précisément, les séries d'exercices seront accompagnées d'un corrigé au format PDF et certains problèmes bénéficieront d'une correction détaillée en vidéo, dans laquelle l'un des enseignants présentera la solution, étape par étape. Finalement, chaque vidéo de cours sera suivie d'un quiz, dont le but est de tester le degré d’assimilation des connaissances acquises.

Le cours est organisé en dix chapitres dans lesquels une approche très détaillée des concepts théoriques est proposée, ainsi que de multiples exemples illustratifs :

1) Systèmes d'équations linéaires.

2) Algèbre matricielle.

3) Espaces vectoriels.

4) Bases et dimensions.

5) Applications linéaires.

6) Matrices et applications linéaires.

7) Déterminants.

8) Vecteurs propres, valeurs propres, diagonalisation.

9) Produits scalaires et espaces euclidiens.

10) Matrices orthogonales et matrices symétriques.

Cette première partie du cours sera dévouée à l'étude des quatre premiers chapitres cités plus haut. Aucune connaissance particulière n’est requise pour comprendre les concepts abordés dans ce MOOC, mais il est conseillé de travailler régulièrement et de manière assidue, de façon à ne pas prendre de retard lors de l'apprentissage de la matière.

Here's a deal for you

We found an offer that may be relevant to this course.
Save money when you learn. All coupon codes, vouchers, and discounts are applied automatically unless otherwise noted.

What's inside

Learning objectives

  • De définir les concepts théoriques introduits en cours et d'en donner des exemples illustratifs ;
  • D'appliquer la théorie matricielle à la résolution de systèmes linéaires et d’interpréter les résultats obtenus ;
  • De déterminer si un ensemble muni d'une addition et d'une multiplication par scalaires est un espace vectoriel (ou si un sous-ensemble d'un espace vectoriel est un sous-espace vectoriel) ;
  • De maîtriser les diverses notions relatives à la théorie des espaces vectoriels (e.g. bases, dimensions, sous-espaces).
  • A la fin du cours, l'étudiant sera capable

Good to know

Know what's good
, what to watch for
, and possible dealbreakers
Examine les fondements de l'algèbre linéaire, essentielle en économie, ingénierie, physique et statistique
Explore les applications pratiques de l'algèbre linéaire pour résoudre des problèmes concrets
Développe une solide compréhension des concepts théoriques et des exemples illustratifs
Applique la théorie matricielle à la résolution de systèmes linéaires et interprète les résultats obtenus
Détermine si un ensemble est un espace vectoriel ou un sous-espace vectoriel
Maîtrise les notions de bases, de dimensions et de sous-espaces dans les espaces vectoriels
Convient aux étudiants de première année en ingénierie à l'Ecole Polytechnique Fédérale de Lausanne
Requiert un travail régulier et assidu pour suivre le rythme d'apprentissage

Save this course

Save Algèbre Linéaire (Partie 1) to your list so you can find it easily later:
Save

Reviews summary

Algèbre linéaire, complément des mathématiques

Ce cours d'algèbre linéaire offre une base solide pour les étudiants en complément de leurs études en économie, ingénierie, physique ou statistique. Il se compose de 10 chapitres couvrant les systèmes d'équations linéaires, l'algèbre matricielle, les espaces vectoriels, les bases et les dimensions, les applications linéaires, les déterminants, les vecteurs propres, les valeurs propres et la diagonalisation, les produits scalaires et les espaces euclidiens, les matrices orthogonales et les matrices symétriques. Les vidéos constituent le cœur du cours, complétées par des exercices QCM, des séries au format PDF et des corrigés. L'approche très détaillée des concepts théoriques et les exemples illustratifs rendent ce cours accessible aux débutants, mais il est recommandé de travailler régulièrement pour suivre le rythme.
Base solide d'algèbre linéaire
"n'en est pas moins un cours à part entière"
Outil complémentaire des maths
"Vous voulez apprendre l'algèbre linéaire, un précieux outil complémentaire à vos connaissances acquises durant vos études en économie, ingénierie, physique, ou statistique"
Travail régulier et assidu
"il est conseillé de travailler régulièrement et de manière assidue"

Activities

Be better prepared before your course. Deepen your understanding during and after it. Supplement your coursework and achieve mastery of the topics covered in Algèbre Linéaire (Partie 1) with these activities:
Review the basics of linear algebra
This course assumes you have a basic understanding of linear algebra. If you need to brush up on the basics, there are many online tutorials that can help.
Show steps
  • Find an online tutorial on linear algebra
  • Watch the tutorial videos
  • Complete the practice exercises
Compile your course materials
Combine all of your notes, assignments, practice questions, and handouts into a single digital or physical folder for easy reference.
Show steps
  • Gather all the materials you need
  • Decide on a storage system
  • Organize and label your materials
Create a visual representation of matrices
By creating a visual representation of matrices, you will improve your understanding of their structure and properties.
Browse courses on Matrices
Show steps
  • Choose a visualization method (e.g. graphs, tables)
  • Select the matrices you want to represent
  • Create your visual representation
Show all three activities

Career center

Learners who complete Algèbre Linéaire (Partie 1) will develop knowledge and skills that may be useful to these careers:
Mathematician
Mathematicians develop new mathematical theories and solve mathematical problems. This course will provide you with a strong foundation in linear algebra, a fundamental area of mathematics with broad applications across various fields. By understanding the concepts of matrices, vectors, and linear transformations, you'll be well-equipped to pursue advanced studies in mathematics and contribute to the field.
Computer Scientist
Computer Scientists design, develop, and analyze computer systems. This course will provide you with a foundation in linear algebra, which is increasingly used in computer science for tasks such as computer graphics, image processing, and machine learning. By understanding the concepts of matrices, vectors, and linear transformations, you'll be able to develop efficient algorithms, optimize software performance, and solve complex technical problems.
Software Engineer
Software Engineers design, develop, and maintain software systems. This course will provide you with a foundation in linear algebra, which is increasingly used in software development for tasks such as computer graphics, image processing, and machine learning. By understanding the concepts of matrices, vectors, and linear transformations, you'll be able to develop efficient algorithms, optimize software performance, and solve complex technical problems.
Operations Research Analyst
Operations Research Analysts use mathematical and analytical techniques to solve complex business problems. This course will provide you with a foundation in linear algebra, which is used in operations research to model and optimize decision-making processes. By understanding the concepts of matrices, vectors, and linear transformations, you'll be able to develop mathematical models, analyze data, and make recommendations to improve operational efficiency.
Engineer
Engineers design, build, and maintain structures, machines, and systems. This course will provide you with a foundation in linear algebra, a mathematical tool that is widely used in engineering for tasks such as structural analysis, mechanical design, and control systems. By understanding the concepts of matrices, vectors, and linear transformations, you'll be able to model engineering systems, analyze data, and make informed design decisions.
Data Analyst
Data Analysts collect, process, and analyze data to extract meaningful insights. This course will provide you with a foundation in linear algebra, which is essential for wrangling and analyzing large datasets. By understanding the concepts of matrices, vectors, and linear transformations, you'll be able to clean and prepare data, build statistical models, and communicate data-driven insights.
Quantitative Analyst
Quantitative Analysts (Quants) use mathematical and statistical modeling to analyze financial data and make investment recommendations. This course will provide you with a strong foundation in linear algebra, which is widely used in financial modeling. By understanding the concepts of matrices, vectors, and linear transformations, you'll be able to develop complex financial models, analyze risk, and make data-driven investment decisions.
Statistician
Statisticians collect, analyze, and interpret data to draw conclusions and make predictions. This course will provide you with a strong foundation in linear algebra, which is essential for statistical modeling and data analysis. By understanding the concepts of matrices, vectors, and linear transformations, you'll be able to develop statistical models, analyze data, and make informed decisions based on data.
Financial Analyst
Financial Analysts use financial data and models to make investment recommendations and advise clients on financial planning. This course will provide you with a strong foundation in linear algebra, which is widely used in financial analysis for tasks such as portfolio optimization, risk management, and financial forecasting. By understanding the concepts of matrices, vectors, and linear transformations, you'll be able to develop financial models, analyze data, and make informed investment decisions.
Physicist
Physicists study the fundamental laws of nature and the physical world. This course will provide you with a foundation in linear algebra, a mathematical tool that is essential for understanding and describing physical phenomena. By understanding the concepts of matrices, vectors, and linear transformations, you'll be able to model physical systems, analyze data, and make predictions based on physical principles.
Economist
Economists use economic theories and data to analyze economic trends and make policy recommendations. This course will provide you with a foundation in linear algebra, which is widely used in economics for tasks such as modeling economic growth, forecasting inflation, and analyzing market behavior. By understanding the concepts of matrices, vectors, and linear transformations, you'll be able to develop economic models, analyze data, and make informed policy decisions.
Actuary
Actuaries use mathematical and statistical techniques to assess risk and uncertainty in insurance, finance, and other fields. This course will provide you with a foundation in linear algebra, which is used in actuarial science to model insurance risks, calculate premiums, and design insurance products. By understanding the concepts of matrices, vectors, and linear transformations, you'll be able to develop actuarial models and make informed decisions.
Business Analyst
Business Analysts use data and analytical techniques to solve business problems and improve decision-making. This course will provide you with a foundation in linear algebra, which is used in business analysis for tasks such as financial modeling, forecasting, and risk assessment. By understanding the concepts of matrices, vectors, and linear transformations, you'll be able to develop mathematical models, analyze data, and make informed business decisions.
Market Researcher
Market Researchers conduct research to understand consumer behavior and market trends. This course will provide you with a foundation in linear algebra, which is used in market research for tasks such as data analysis, survey design, and forecasting. By understanding the concepts of matrices, vectors, and linear transformations, you'll be able to analyze market data, develop research models, and make data-driven recommendations.
Data Scientist
Data Scientists are responsible for collecting and analyzing data to help businesses make informed decisions. This course will provide you with the foundational knowledge in linear algebra, a mathematical tool that is essential for processing and analyzing complex datasets. By understanding the concepts of matrices, vectors, and linear transformations, you'll be well-equipped to build statistical models, develop machine learning algorithms, and extract meaningful insights from data.

Reading list

We've selected 33 books that we think will supplement your learning. Use these to develop background knowledge, enrich your coursework, and gain a deeper understanding of the topics covered in Algèbre Linéaire (Partie 1).
Un classique de l'enseignement de l'algèbre linéaire, réputé pour sa clarté et sa pédagogie. Il offre une introduction accessible et complète à la matière.
Ce livre est un classique de l'algèbre linéaire. Il couvre tous les sujets abordés dans le cours, et il est écrit dans un style clair et concis. Il est particulièrement utile pour les étudiants qui souhaitent approfondir leurs connaissances en algèbre linéaire.
Un ouvrage avancé traitant de l'analyse matricielle et de l'algèbre linéaire appliquée. Recommandé pour les étudiants souhaitant approfondir leurs connaissances en algèbre linéaire.
Un ouvrage théorique et abstrait traitant de l'algèbre linéaire. Recommandé pour les étudiants avancés et les professionnels de la recherche souhaitant approfondir leurs connaissances dans ce domaine.
Comprehensive and modern treatment of linear algebra. It is written in a clear and engaging style, and it contains many examples and exercises. It is particularly useful for students who wish to develop a deep understanding of linear algebra.
Ce livre est un manuel d'algèbre linéaire moderne, qui couvre les mêmes sujets que le cours avec des exemples et des exercices supplémentaires.
Ce livre fournit une introduction à l'algèbre linéaire avec des applications dans divers domaines, ce qui peut être utile pour compléter le cours.
Un manuel d'introduction à l'algèbre linéaire, axé sur les applications dans les domaines des sciences et de l'ingénierie.
Ce livre se concentre sur les matrices et les transformations linéaires, ce qui est particulièrement utile pour le chapitre 6 du cours.
Ce livre se concentre sur l'algèbre linéaire appliquée, ce qui peut être utile pour compléter le cours avec des exemples concrets.
Ce livre est une introduction à l'algèbre linéaire, qui couvre les mêmes sujets que le cours de manière plus accessible.
Comprehensive treatment of matrix theory. It covers all the topics that are typically covered in a first course in matrix theory, and it includes many applications from other areas of mathematics.
Un manuel d'algèbre linéaire pour l'informatique et l'ingénierie.
Popular textbook for linear algebra. It is written in a clear and concise style, and it contains many examples and exercises. It is particularly useful for students who are new to linear algebra.
Is an introduction to linear algebra that is designed for students in engineering and science. It covers all the topics that are typically covered in a first course in linear algebra, and it includes many applications from these fields.
Comprehensive treatment of linear algebra and matrix analysis. It is written in a clear and concise style, and it contains many examples and exercises.
Comprehensive and modern treatment of linear algebra. It is written in a clear and concise style, and it contains many examples and exercises.
Comprehensive and modern treatment of linear algebra. It is written in a clear and concise style, and it contains many examples and exercises.
Is an introduction to linear algebra that is written in a clear and engaging style. It is designed for students who are new to linear algebra and who want to learn the subject in a fun and easy way.

Share

Help others find this course page by sharing it with your friends and followers:

Similar courses

Here are nine courses similar to Algèbre Linéaire (Partie 1).
Algèbre Linéaire (Partie 3)
Most relevant
Algèbre Linéaire (Partie 2)
Most relevant
Introduction à l'analyse de données à l'aide d'Excel
Most relevant
Recherche opérationnelle: optimiser ses décisions
Most relevant
Gestion et Politique de l'eau
Most relevant
Introduction à la théorie de Galois
Most relevant
Traitement d'images : segmentation et caractérisation
Most relevant
Cognition sociale
Most relevant
Biais et discrimination en IA
Most relevant
Our mission

OpenCourser helps millions of learners each year. People visit us to learn workspace skills, ace their exams, and nurture their curiosity.

Our extensive catalog contains over 50,000 courses and twice as many books. Browse by search, by topic, or even by career interests. We'll match you to the right resources quickly.

Find this site helpful? Tell a friend about us.

Affiliate disclosure

We're supported by our community of learners. When you purchase or subscribe to courses and programs or purchase books, we may earn a commission from our partners.

Your purchases help us maintain our catalog and keep our servers humming without ads.

Thank you for supporting OpenCourser.

© 2016 - 2024 OpenCourser