Factor Analysis and PCA are powerful tools, applicable in many common situations in business and data analysis. This course covers both the theory and implementation of factor analysis and PCA, in Excel (using VBA), Python, and R.
Factor Analysis and PCA are powerful tools, applicable in many common situations in business and data analysis. This course covers both the theory and implementation of factor analysis and PCA, in Excel (using VBA), Python, and R.
Factor Analysis and PCA are key techniques for dimensionality reduction, and latent factor identification. In this course, Understanding and Applying Factor Analysis and PCA, you'll learn how to understand and apply factor analysis and PCA. First, you'll explore how to cut through the clutter with factor analysis. Next, you'll discover how to carry out factor analysis using PCA, a powerful ML-based approach. Then, you'll learn how to perform eigenvalue decomposition, a cookie-cutter linear algebra procedure. Finally, you'll learn how to implement PCA to explain Google's stock returns in Excel and VBA, R, and Python. By the end of this course, you'll have a strong applied knowledge of factor analysis and PCA that will help you solve complex business problems.
OpenCourser helps millions of learners each year. People visit us to learn workspace skills, ace their exams, and nurture their curiosity.
Our extensive catalog contains over 50,000 courses and twice as many books. Browse by search, by topic, or even by career interests. We'll match you to the right resources quickly.
Find this site helpful? Tell a friend about us.
We're supported by our community of learners. When you purchase or subscribe to courses and programs or purchase books, we may earn a commission from our partners.
Your purchases help us maintain our catalog and keep our servers humming without ads.
Thank you for supporting OpenCourser.