We may earn an affiliate commission when you visit our partners.
Course image
Andrew Ng, Kian Katanforoosh, and Younes Bensouda Mourri

Cette formation vous apprendra à construire des modèles pour le langage naturel, l’audio et les autres données de séquence. Grâce à l’apprentissage profond, les algorithmes de séquence fonctionnent beaucoup mieux qu’il y a deux ans ; nous disposons donc de nombreuses applications très intéressantes en matière de reconnaissance vocale, de synthèse musicale, de chatbots, de traduction automatique, de compréhension naturelle du langage, etc.

Read more

Cette formation vous apprendra à construire des modèles pour le langage naturel, l’audio et les autres données de séquence. Grâce à l’apprentissage profond, les algorithmes de séquence fonctionnent beaucoup mieux qu’il y a deux ans ; nous disposons donc de nombreuses applications très intéressantes en matière de reconnaissance vocale, de synthèse musicale, de chatbots, de traduction automatique, de compréhension naturelle du langage, etc.

Vous allez:

- Comprendre comment construire et former des réseaux neuronaux récurrents (RNN) et des variantes couramment utilisées telles que les GRU et les LSTM.

- Être capable d’appliquer des modèles de séquence à des problèmes de langage naturel, y compris la synthèse de texte.

- Pouvoir appliquer des modèles de séquence à des applications audio, incluant la reconnaissance vocale et la synthèse musicale.

C’est le cinquième et dernier cours de la spécialisation Apprentissage profond.

deeplearning.ai travaille également en partenariat avec le NVIDIA Deep Learning Institute (DLI) dans le cours 5, Modèles de séquence, afin de fournir une affectation de programmation sur la traduction automatique avec l’apprentissage en profondeur. Vous aurez la possibilité de construire un projet d’apprentissage en profondeur avec un contenu de pointe, pertinent pour l’industrie.

Enroll now

What's inside

Syllabus

Réseaux neuronaux récurrents
Découvrez les réseaux neuronaux récurrents. Ce type de modèle s’est avéré extrêmement performant sur les données temporelles. Il comporte plusieurs variantes, y compris les LSTM, les GRU et les RNN bidirectionnels, que vous allez découvrir dans cette section.
Read more
Traitement automatique du langage naturel et prolongements lexicaux
Le traitement du langage naturel avec l'apprentissage profond est une combinaison importante. En utilisant des représentations de vecteurs de mots et des couches de prolongements, vous pouvez former des réseaux neuronaux récurrents avec des performances exceptionnelles, dans une grande variété de secteurs. Des exemples d’applications sont l’analyse de sentiments, la reconnaissance d’entités nommées et la traduction automatique.
Modèles de séquence et mécanisme d’attention
Les modèles de séquence peuvent être améliorés à l’aide d’un mécanisme d’attention. Cet algorithme aidera votre modèle à comprendre où celui-ci doit focaliser son attention, compte tenu d’une séquence d’entrées. Cette semaine, vous apprendrez également à reconnaître la parole et à gérer les données audio.

Good to know

Know what's good
, what to watch for
, and possible dealbreakers
Développe les modèles de séquence, qui sont essentiels pour traiter des données audio et linguistiques
Enseigne les réseaux neuronaux récurrents, notamment les LSTM et les GRU, qui sont très efficaces pour les données temporelles
Fournit des affectations de programmation pratique sur la traduction automatique avec l'apprentissage en profondeur
S'appuie sur des représentations de vecteurs de mots et des couches de prolongements pour optimiser le traitement du langage naturel
Intègre un mécanisme d'attention pour améliorer la compréhension des modèles de séquence
Nécessite des connaissances préalables en apprentissage profond

Save this course

Save Modèles de séquence to your list so you can find it easily later:
Save

Activities

Be better prepared before your course. Deepen your understanding during and after it. Supplement your coursework and achieve mastery of the topics covered in Modèles de séquence with these activities:
Suivre des tutoriels sur les réseaux neuronaux récurrents
Les tutoriels pratiques vous aideront à approfondir votre compréhension des réseaux neuronaux récurrents et à acquérir de l'expérience pratique.
Browse courses on GRU
Show steps
  • Trouver des tutoriels en ligne ou des cours sur les réseaux neuronaux récurrents.
  • Suivre les tutoriels étape par étape et mettre en œuvre les concepts dans votre propre environnement de codage.
  • Expérimenter avec différents paramètres et architectures de réseau.
Participer à des sessions d'étude de groupe
Discuter des concepts avec des pairs et partager des connaissances peut renforcer la compréhension et identifier les points faibles.
Show steps
  • Rejoindre ou créer un groupe d'étude avec d'autres étudiants du cours.
  • Participer activement aux discussions, en posant des questions et en partageant des idées.
Compiler une collection de ressources sur les modèles de séquence
Rassembler des ressources pertinentes peut fournir une référence précieuse pour une étude plus approfondie et une révision future.
Show steps
  • Collecter des articles de recherche, des tutoriels, des exemples de code et d'autres ressources sur les modèles de séquence.
  • Organiser et documenter les ressources de manière accessible.
One other activity
Expand to see all activities and additional details
Show all four activities
Contribuer à des projets open source liés aux modèles de séquence
Contribuer à des projets open source peut vous exposer à des pratiques industrielles, étendre vos connaissances et améliorer vos compétences de collaboration.
Show steps
  • Trouver des dépôts GitHub ou des projets d'apprentissage profond liés aux modèles de séquence.
  • Identifier les moyens de contribuer, tels que la correction de bogues, la documentation ou l'ajout de fonctionnalités.
  • Collaborer avec d'autres contributeurs et maintenir des normes de codage.

Career center

Learners who complete Modèles de séquence will develop knowledge and skills that may be useful to these careers:
NLP Engineer
NLP Engineers develop and maintain cutting-edge technology for natural language processing, working to improve communication between computers and humans. The course will help you build a great foundation for this career by helping you build a strong understanding of foundational concepts in NLP, such as recurrent neural networks, word vector representations, and attention mechanisms. These concepts are all essential for developing the next generation of NLP applications.
Machine Learning Engineer
Machine Learning Engineers develop and maintain machine learning models, working to improve the accuracy and efficiency of these models. The course will introduce you to foundational concepts in machine learning, such as recurrent neural networks, word vector representations, and attention mechanisms. These concepts are all essential for developing the next generation of machine learning models.
Data Scientist
Data Scientists use their expertise in statistics and programming to analyze data and extract meaningful insights. This course offers a strong introduction to topics like recurrent neural networks, word vector representations, and attention mechanisms, which are highly relevant to data science. Working with these topics can help you build a better foundation in data science.
Natural Language Processing Researcher
Natural Language Processing Researchers develop new methods for processing and understanding natural language. This course will provide you with a number of valuable skills for this career, including experience with recurrent neural networks, word vector representations, and attention mechanisms. These concepts are at the forefront of NLP research, so you'll gain an edge over other candidates by learning about them.
Speech Recognition Engineer
Speech Recognition Engineers develop and maintain speech recognition systems, working to improve the accuracy and efficiency of these systems. This course will help you build a great foundation for this career by helping you build a strong understanding of foundational concepts in speech recognition, such as recurrent neural networks, word vector representations, and attention mechanisms. These concepts are all essential for developing the next generation of speech recognition systems.
Software Engineer
Software Engineers design, develop, and maintain software applications. This course will provide you with a number of valuable skills for this career, including experience with recurrent neural networks, word vector representations, and attention mechanisms. These concepts are being increasingly used in software development, so you'll gain an edge over other candidates by learning about them.
Computational Linguist
Computational Linguists use their expertise in linguistics and computer science to develop new methods for processing and understanding natural language. This course may be useful for this career path, as it will introduce you to a number of relevant concepts, including recurrent neural networks, word vector representations, and attention mechanisms.
Machine Learning Researcher
Machine Learning Researchers develop new methods for machine learning. This course may be useful for this career path, as it will introduce you to a number of relevant concepts, including recurrent neural networks, word vector representations, and attention mechanisms.
Data Analyst
Data Analysts use their expertise in statistics and programming to analyze data and extract meaningful insights. This course may be useful for this career path, as it will introduce you to a number of relevant concepts, including recurrent neural networks, word vector representations, and attention mechanisms.
Artificial Intelligence Engineer
Artificial Intelligence Engineers develop and maintain artificial intelligence systems. This course may be useful for this career path, as it will introduce you to a number of relevant concepts, including recurrent neural networks, word vector representations, and attention mechanisms.
Business Analyst
Business Analysts use their expertise in business and data analysis to identify and solve business problems. This course may be useful for this career path, as it will introduce you to a number of relevant concepts, including recurrent neural networks, word vector representations, and attention mechanisms.
Project Manager
Project Managers plan and execute projects. This course may be useful for this career path, as it will introduce you to a number of relevant concepts, including recurrent neural networks, word vector representations, and attention mechanisms.
Product Manager
Product Managers develop and manage products. This course may be useful for this career path, as it will introduce you to a number of relevant concepts, including recurrent neural networks, word vector representations, and attention mechanisms.
Technical Writer
Technical Writers create and maintain technical documentation. This course may be useful for this career path, as it will introduce you to a number of relevant concepts, including recurrent neural networks, word vector representations, and attention mechanisms.
Teacher
Teachers educate students in a variety of subjects. This course may be useful for this career path, as it will introduce you to a number of relevant concepts, including recurrent neural networks, word vector representations, and attention mechanisms.

Reading list

We've selected seven books that we think will supplement your learning. Use these to develop background knowledge, enrich your coursework, and gain a deeper understanding of the topics covered in Modèles de séquence.
Comprehensive introduction to deep learning, covering the latest techniques and applications. It valuable resource for anyone who wants to learn about deep learning, regardless of their background.
This comprehensive textbook introduces deep learning, covering theoretical and practical aspects. It provides a solid foundation for those new to the field and a valuable reference for experienced researchers.
Provides a comprehensive overview of speech and language processing, covering topics such as speech recognition, natural language processing, and machine translation. It valuable resource for anyone who wants to learn about these topics, regardless of their background.
This comprehensive textbook provides a solid foundation in speech recognition, covering both theory and practical applications.
Provides a comprehensive overview of natural language processing in Python, covering topics such as tokenization, stemming, and parsing. It valuable resource for anyone who wants to learn about these topics, regardless of their background.
Provides a comprehensive overview of deep learning with Python, covering topics such as neural networks, convolutional neural networks, and recurrent neural networks. It valuable resource for anyone who wants to learn about these topics, regardless of their background.
Provides a comprehensive overview of natural language processing with R, covering topics such as tokenization, stemming, and parsing. It valuable resource for anyone who wants to learn about these topics, regardless of their background.

Share

Help others find this course page by sharing it with your friends and followers:

Similar courses

Here are nine courses similar to Modèles de séquence.
Serverless Machine Learning with Tensorflow on Google...
Most relevant
Attention Mechanism - Français
Most relevant
Créer une Fonction Personnalisée en JS et Google App...
Most relevant
ChatGPT pour tous
Most relevant
Business Transformation with Google Cloud en Français
Most relevant
Le solfège à votre portée
Most relevant
Introduction à l’économétrie
Most relevant
Vision artificielle et exploitation intelligente des...
Most relevant
Traitement d'images : introduction au filtrage
Most relevant
Our mission

OpenCourser helps millions of learners each year. People visit us to learn workspace skills, ace their exams, and nurture their curiosity.

Our extensive catalog contains over 50,000 courses and twice as many books. Browse by search, by topic, or even by career interests. We'll match you to the right resources quickly.

Find this site helpful? Tell a friend about us.

Affiliate disclosure

We're supported by our community of learners. When you purchase or subscribe to courses and programs or purchase books, we may earn a commission from our partners.

Your purchases help us maintain our catalog and keep our servers humming without ads.

Thank you for supporting OpenCourser.

© 2016 - 2024 OpenCourser