이 강좌는 머신 러닝에 관심이 있으며 데이터 분석 및 자동화에 머신 러닝을 적용하길 원하는 전문가를 위한 강좌입니다. 이 강좌는 금융, 의약품, 공학, 비즈니스 등 분야와 상관없이 머신 러닝 프로젝트에서 문제를 정의하고 데이터를 준비하는 방법을 소개합니다.이 강좌를 수료하고 나면 머신 러닝 문제를 두 가지 접근 방법으로 정의할 수 있을 것입니다. 또한 이용 가능한 데이터 자료를 조사하고 잠재적 ML 적용을 알아보는 방법을 알게 될 것입니다. 비즈니스 니즈를 파악하고 실용 머신 러닝에 적용하는 방법을 알게 될 것입니다. 그리고 머신 러닝을 효과적으로 적용하기 위해 데이터를 준비할 수 있을 것입니다.이 강좌는 Coursera와 Alberta Machine Intelligence Institute에서 준비한 첫 번째 실용 머신 러닝 전문 과정입니다.
OpenCourser helps millions of learners each year. People visit us to learn workspace skills, ace their exams, and nurture their curiosity.
Our extensive catalog contains over 50,000 courses and twice as many books. Browse by search, by topic, or even by career interests. We'll match you to the right resources quickly.
Find this site helpful? Tell a friend about us.
We're supported by our community of learners. When you purchase or subscribe to courses and programs or purchase books, we may earn a commission from our partners.
Your purchases help us maintain our catalog and keep our servers humming without ads.
Thank you for supporting OpenCourser.