The age of machine learning has arrived! Arm technology is powering a new generation of connected devices with sophisticated sensors that can collect a vast range of environmental, spatial and audio/visual data. Typically this data is processed in the cloud using advanced machine learning tools that are enabling new applications reshaping the way we work, travel, live and play.
The age of machine learning has arrived! Arm technology is powering a new generation of connected devices with sophisticated sensors that can collect a vast range of environmental, spatial and audio/visual data. Typically this data is processed in the cloud using advanced machine learning tools that are enabling new applications reshaping the way we work, travel, live and play.
To improve efficiency and performance, developers are now looking to analyse this data directly on the source device – usually a microcontroller (we call this ‘the Edge’). But with this approach comes the challenge of implementing machine learning on devices that have constrained computing resources.
This is where our course can help!
By enrolling in Machine Learning at th e Edge on Arm: A Practical Introduction you’ll learn how to train machine learning models and implement them on industry relevant Arm-based microcontrollers.
We’ll start your learning journey by taking you through the basics of artificial intelligence , machine learning and machine learning at the edge , and illustrate why businesses now need this technology to be available on connected devices. We’ll then introduce you to the concept of datasets and how to train algorithms using tools like Anaconda and Python. We'll then go on to explore advanced topics in machine learning such as artificial neural networks and computer vision.
Along the way, our practical lab exercises will show you how you can address real-world design problems in deploying machine learning applications, such as speech and pattern recognition, as well as image processing, using actual sensor data obtained from the microcontroller. We'll also introduce you to the open source TensorFlow Python library, which is useful in the training and inference of deep neural networks.
In the final module you’ll be able to apply what you’ve learned by implementing machine learning algorithms on a dataset of your choice.
The ST DISCO-L475E board used in this course can be purchased directly from our technology partner STMicroelectronics: https://www.st.com/content/st_com/en/campaigns/educationalplatforms/iot-arm-edx-edu.html
Through our vast ecosystem, Arm already powers a wide range of devices and applications that rely on machine learning at the edge. Be a part of this vibrant community of developers and start your machine learning journey by enrolling in our course today!
OpenCourser helps millions of learners each year. People visit us to learn workspace skills, ace their exams, and nurture their curiosity.
Our extensive catalog contains over 50,000 courses and twice as many books. Browse by search, by topic, or even by career interests. We'll match you to the right resources quickly.
Find this site helpful? Tell a friend about us.
We're supported by our community of learners. When you purchase or subscribe to courses and programs or purchase books, we may earn a commission from our partners.
Your purchases help us maintain our catalog and keep our servers humming without ads.
Thank you for supporting OpenCourser.