XGBoost is the most winning supervised machine learning approach in competitive modeling on structured datasets. This course will teach you the basics of XGBoost, including basic syntax, functions, and implementing the model in the real world.
XGBoost is the most winning supervised machine learning approach in competitive modeling on structured datasets. This course will teach you the basics of XGBoost, including basic syntax, functions, and implementing the model in the real world.
At the core of applied machine learning is supervised machine learning. In this course, Machine Learning with XGBoost Using scikit-learn in Python, you will learn how to build supervised learning models using one of the most accurate algorithms in existence. First, you will discover what XGBoost is and why it’s revolutionized competitive modeling. Next, you will explore the importance of data wrangling and see how clean data affects XGBoost’s performance. Finally, you will learn how to build, train, and score XGBoost models for real-world performance. When you are finished with this course, you will have a foundational knowledge of XGBoost that will help you as you move forward to becoming a machine learning engineer.
OpenCourser helps millions of learners each year. People visit us to learn workspace skills, ace their exams, and nurture their curiosity.
Our extensive catalog contains over 50,000 courses and twice as many books. Browse by search, by topic, or even by career interests. We'll match you to the right resources quickly.
Find this site helpful? Tell a friend about us.
We're supported by our community of learners. When you purchase or subscribe to courses and programs or purchase books, we may earn a commission from our partners.
Your purchases help us maintain our catalog and keep our servers humming without ads.
Thank you for supporting OpenCourser.