We may earn an affiliate commission when you visit our partners.
Course image
Rafael Crescenzi and Pablo Alejandro Albani

Este curso te brindará los conocimientos introductorios sobre Aprendizaje Profundo, vas a entender

los fundamentos teóricos y su implementación . Se comenzará entendiendo cómo evolucionó el

campo hasta llegar a las redes profundas y cuáles son sus principales beneficios frente a otras

técnicas de aprendizaje supervisado, así como también sus limitaciones y situaciones en donde no

posee un rendimiento superior

Enroll now

What's inside

Syllabus

Introducción al aprendizaje profundo
Se estudiará qué es el aprendizaje supervisado, que son las redes neuronales, a qué llamamos aprendizaje profundo y cuál es su importancia actual
Read more
Conceptos Básicos de Redes Neuronales
Se analizarán los conceptos más importantes referidos a las redes neuronales, partiendo desde la clasificación binaria con regresiones logísticas, el descenso del gradiente y la vectorización.
Red Neuronal de una sola capa oculta
Se introducirán a las redes neuronales profundas, intuición de las funciones de activación, iniciaciones y propagaciones
Red Neuronal Profundas
Se explorarán las Redes Neuronales denominadas profundas, es decir, aquellas con múltiples capas ocultas, que permiten una representación más compleja de los patrones en los datos. Se evaluará como cambia su implementación y optimización de parámetros

Good to know

Know what's good
, what to watch for
, and possible dealbreakers
Fortalece los cimientos para estudiantes de nivel intermedio
Desarrolla competencias profesionales y una profunda especialización en tópicos de Aprendizaje Profundo
Ofrece un estudio integral sobre este aspecto de las Ciencias de la Computación
Explora perspectivas únicas e ideas que pueden complementar otros temas y áreas
Incluye un mix de materiales de aprendizaje en diversos formatos
Requiere que los estudiantes cuenten con amplios conocimientos previos

Save this course

Save Introducción al Aprendizaje Profundo to your list so you can find it easily later:
Save

Reviews summary

Reasonably explained deep learning

This course provides learners with an introductory overview of Deep Learning. It begins by exploring the theoretical foundations of Deep Learning and its implementation. While learners have generally commented that the content is organized and explained well, there is some feedback that the course is not intuitive for beginners.
Clearly explained and organized topics
"esta muy bien armado y explicado"
Good for those without a strong programming background
"NO ES PARA NADA INTUITIVO NI APTO PARA PRINCIPIANTES"

Activities

Be better prepared before your course. Deepen your understanding during and after it. Supplement your coursework and achieve mastery of the topics covered in Introducción al Aprendizaje Profundo with these activities:
Repasar conceptos básicos de redes neuronales
Repasar los conceptos básicos de las redes neuronales lo ayudará a comprender mejor los fundamentos del aprendizaje profundo.
Show steps
  • Leer el material del curso sobre redes neuronales
  • Resolver ejercicios prácticos sobre redes neuronales
Repaso de conceptos básicos de redes neuronales
Refuerza tu comprensión de los fundamentos de las redes neuronales antes de comenzar el curso.
Show steps
  • Revisa la clasificación binaria con regresiones logísticas
  • Analiza el descenso del gradiente
  • Comprende la vectorización
Sigue tutoriales sobre redes neuronales profundas
Esta actividad complementará las lecciones del curso con sesiones prácticas adicionales.
Show steps
  • Busca tutoriales en línea
  • Sigue las instrucciones paso a paso
  • Implementa los conceptos aprendidos
Five other activities
Expand to see all activities and additional details
Show all eight activities
Resuelve ejercicios de optimización de parámetros
Esta actividad solidificará tu capacidad para optimizar los parámetros de un modelo de aprendizaje profundo.
Show steps
  • Identifica los parámetros a optimizar
  • Elige un algoritmo de optimización
  • Ajusta la tasa de aprendizaje
Ejercicios de redes neuronales de una sola capa oculta
Fortalece tu habilidad para implementar y optimizar redes neuronales de una sola capa oculta.
Show steps
  • Implementa una red neuronal de una sola capa oculta
  • Ajusta los parámetros de la red
  • Evalúa el rendimiento de la red
Construye una red neuronal de una sola capa oculta
Esta actividad enriquecerá tu comprensión de la estructura y funcionamiento de las redes neuronales de una sola capa oculta.
Show steps
  • Define la arquitectura de la red
  • Entrena el modelo
  • Evalúa el rendimiento
Seguimiento de tutoriales de TensorFlow
Seguir tutoriales de TensorFlow lo ayudará a familiarizarse con la implementación práctica del aprendizaje profundo.
Browse courses on TensorFlow
Show steps
  • Elegir un tutorial de TensorFlow sobre redes neuronales
  • Completar el tutorial y crear un modelo de red neuronal
Ejercicios prácticos de optimización de parámetros
Los ejercicios prácticos de optimización de parámetros lo ayudarán a mejorar sus habilidades para ajustar modelos de redes neuronales.
Show steps
  • Resolver ejercicios de optimización de parámetros manualmente
  • Usar bibliotecas como TensorFlow o PyTorch para optimizar parámetros

Career center

Learners who complete Introducción al Aprendizaje Profundo will develop knowledge and skills that may be useful to these careers:
Artificial Intelligence Engineer
Artificial Intelligence Engineers design, develop, and maintain artificial intelligence systems. They use their knowledge of computer science and artificial intelligence principles to create systems that can perform tasks that are typically done by humans. The course, Introducción al Aprendizaje Profundo, can be useful for Artificial Intelligence Engineers because it provides a foundation in the principles of deep learning, which is a powerful tool for artificial intelligence development. The course covers topics such as supervised learning, neural networks, and deep learning architectures.
Machine Learning Engineer
Machine Learning Engineers design, build, and maintain machine learning models. They use their knowledge of machine learning algorithms and software engineering to develop solutions that can automate tasks and make predictions. The course, Introducción al Aprendizaje Profundo, can be useful for Machine Learning Engineers because it provides a foundation in the principles of deep learning, which is a powerful tool for machine learning. The course covers topics such as supervised learning, neural networks, and deep learning architectures.
Data Analyst
Data Analysts are responsible for collecting, cleaning, and analyzing data to identify trends and patterns. They use their findings to make recommendations that can help businesses improve their operations. The course, Introducción al Aprendizaje Profundo, can be useful for Data Analysts because it provides a foundation in the principles of deep learning, which is a powerful tool for data analysis. The course covers topics such as supervised learning, neural networks, and deep learning architectures.
Quantitative Analyst
Quantitative Analysts use mathematical and statistical models to analyze financial data. They use their findings to make recommendations on investments and trading strategies. The course, Introducción al Aprendizaje Profundo, can be useful for Quantitative Analysts because it provides a foundation in the principles of deep learning, which is a powerful tool for financial analysis. The course covers topics such as supervised learning, neural networks, and deep learning architectures.
Robotics Engineer
Robotics Engineers design and develop robots. They use their knowledge of computer science, engineering, and robotics principles to create robots that can perform tasks that are typically done by humans. The course, Introducción al Aprendizaje Profundo, can be useful for Robotics Engineers because it provides a foundation in the principles of deep learning, which is a powerful tool for robotics. The course covers topics such as supervised learning, neural networks, and deep learning architectures.
Natural Language Processing Engineer
Natural Language Processing Engineers design and develop natural language processing systems. They use their knowledge of computer science and natural language processing principles to create systems that can understand and generate human language. The course, Introducción al Aprendizaje Profundo, can be useful for Natural Language Processing Engineers because it provides a foundation in the principles of deep learning, which is a powerful tool for natural language processing. The course covers topics such as supervised learning, neural networks, and deep learning architectures.
Computer Vision Engineer
Computer Vision Engineers design and develop computer vision systems. They use their knowledge of computer science and computer vision principles to create systems that can interpret and understand images and videos. The course, Introducción al Aprendizaje Profundo, can be useful for Computer Vision Engineers because it provides a foundation in the principles of deep learning, which is a powerful tool for computer vision. The course covers topics such as supervised learning, neural networks, and deep learning architectures.
Data Engineer
Data Engineers design and build the infrastructure that is used to store and process data. They work with data scientists and other engineers to ensure that data is available for analysis and use. The course, Introducción al Aprendizaje Profundo, can be useful for Data Engineers because it provides a foundation in the principles of deep learning, which is a powerful tool for data engineering. The course covers topics such as supervised learning, neural networks, and deep learning architectures.
Data Scientist
Data Scientists use their knowledge of statistics, computer science, and business to solve complex problems. They develop and implement data-driven solutions that can help businesses improve their decision-making. The course, Introducción al Aprendizaje Profundo, can be useful for Data Scientists because it provides a foundation in the principles of deep learning, which is a powerful tool for data analysis and modeling. The course covers topics such as supervised learning, neural networks, and deep learning architectures.
Software Engineer
Software Engineers design, develop, and maintain software systems. They use their knowledge of computer science and software engineering principles to create software that meets the needs of users. The course, Introducción al Aprendizaje Profundo, can be useful for Software Engineers because it provides a foundation in the principles of deep learning, which is a powerful tool for software development. The course covers topics such as supervised learning, neural networks, and deep learning architectures.
Research Scientist
Research Scientists conduct research to advance our understanding of the world. They use their knowledge of science, engineering, and mathematics to develop new technologies and solve complex problems. The course, Introducción al Aprendizaje Profundo, can be useful for Research Scientists because it provides a foundation in the principles of deep learning, which is a powerful tool for research. The course covers topics such as supervised learning, neural networks, and deep learning architectures.
Business Analyst
Business Analysts use their knowledge of business and technology to solve problems and improve decision-making. They work with stakeholders to identify and analyze business needs, and then develop and implement solutions. The course, Introducción al Aprendizaje Profundo, can be useful for Business Analysts because it provides a foundation in the principles of deep learning, which is a powerful tool for business analysis. The course covers topics such as supervised learning, neural networks, and deep learning architectures.
Product Manager
Product Managers are responsible for the development and launch of new products. They work with engineers, designers, and marketers to ensure that products meet the needs of customers. The course, Introducción al Aprendizaje Profundo, can be useful for Product Managers because it provides a foundation in the principles of deep learning, which is a powerful tool for product development. The course covers topics such as supervised learning, neural networks, and deep learning architectures.
Algorithm Engineer
Algorithm Engineers design and develop algorithms. They use their knowledge of computer science and mathematics to create algorithms that can solve problems and perform tasks. The course, Introducción al Aprendizaje Profundo, may be useful for Algorithm Engineers because it provides a foundation in the principles of deep learning, which is a powerful tool for algorithm development. The course covers topics such as supervised learning, neural networks, and deep learning architectures.
Financial Analyst
Financial Analysts use their knowledge of finance and economics to analyze financial data and make recommendations on investments. The course, Introducción al Aprendizaje Profundo, may be useful for Financial Analysts because it provides a foundation in the principles of deep learning, which is a powerful tool for financial analysis. The course covers topics such as supervised learning, neural networks, and deep learning architectures.

Reading list

We've selected six books that we think will supplement your learning. Use these to develop background knowledge, enrich your coursework, and gain a deeper understanding of the topics covered in Introducción al Aprendizaje Profundo.
Este libro brinda una base sólida en el aprendizaje profundo, que incluye redes neuronales, aprendizaje por refuerzo y procesamiento del lenguaje natural. Es un libro de referencia completo y valioso para los conceptos fundamentales del aprendizaje profundo.
Este libro proporciona una guía integral para utilizar TensorFlow para desarrollar y entrenar modelos de aprendizaje profundo. Es un recurso valioso para aquellos interesados en implementar y utilizar TensorFlow para proyectos de aprendizaje profundo.
Este libro ofrece una guía práctica para implementar redes neuronales y algoritmos de aprendizaje profundo en Python utilizando la biblioteca Keras. Es un recurso valioso para aquellos que buscan aplicar el aprendizaje profundo a proyectos prácticos.
Este libro proporciona una introducción integral al procesamiento del lenguaje natural utilizando el aprendizaje profundo. Cubre conceptos clave, algoritmos y aplicaciones en el procesamiento del lenguaje natural.
Este libro ofrece una guía práctica para implementar algoritmos de aprendizaje automático y aprendizaje profundo utilizando bibliotecas populares como Scikit-Learn, Keras y TensorFlow. Es un recurso valioso para aquellos interesados en la aplicación práctica del aprendizaje automático.
Este libro ofrece una introducción práctica al aprendizaje automático para aquellos con experiencia técnica. Se centra en implementar algoritmos de aprendizaje automático utilizando código y herramientas de código abierto.

Share

Help others find this course page by sharing it with your friends and followers:

Similar courses

Here are nine courses similar to Introducción al Aprendizaje Profundo.
Psicología del Aprendizaje
IA para todos: domina los conceptos básicos
Mejorar la evaluación para mejorar el aprendizaje
Leveraging Unstructured Data with Cloud Dataproc on...
Introducción a R para ciencia de datos
Introducción a Machine Learning
Lectura crítica: proceso, niveles y herramientas
Evaluación del y para el aprendizaje en educación...
Planeación didáctica por competencias
Our mission

OpenCourser helps millions of learners each year. People visit us to learn workspace skills, ace their exams, and nurture their curiosity.

Our extensive catalog contains over 50,000 courses and twice as many books. Browse by search, by topic, or even by career interests. We'll match you to the right resources quickly.

Find this site helpful? Tell a friend about us.

Affiliate disclosure

We're supported by our community of learners. When you purchase or subscribe to courses and programs or purchase books, we may earn a commission from our partners.

Your purchases help us maintain our catalog and keep our servers humming without ads.

Thank you for supporting OpenCourser.

© 2016 - 2024 OpenCourser